Skip to content
Snippets Groups Projects
Commit c628fb43 authored by Krueger Jasmin's avatar Krueger Jasmin
Browse files

Further work on finding lambda for validation of Hensel

parent 2d3c50c9
No related branches found
No related tags found
No related merge requests found
......@@ -533,8 +533,114 @@ nous avons:
\end{matrix}\right)
\end{align*}
ou alors, en notant $\dot{g} := rev(\tilde{g})^{-1}$ et $rev(a):= rev_{\deg a}(a)$:
\begin{align*}
\left|N_P(g,h)-N_P(g',h')\right| &= \left|N_P(g,h)-N_P(g+\delta_g,h+\delta_h)\right|\\
&= \left|N_P(g,h) - \left(N_P(g,h) + \left(\begin{matrix}
\delta_g\\
\delta_h
\end{matrix}\right) - \left(\begin{matrix}
t\left(h\delta_g+g\delta_h+\delta_g\delta_h\right)\%\tilde{g}\\
s\left(h\delta_g+g\delta_h+\delta_g\delta_h\right)\%\tilde{h}
\end{matrix}\right)\right)\right|\\
&= \left|-\left(\begin{matrix}
\delta_g\\
\delta_h
\end{matrix}\right) + \left(\begin{matrix}
t\left(h\delta_g+g\delta_h+\delta_g\delta_h\right)\%\tilde{g}\\
s\left(h\delta_g+g\delta_h+\delta_g\delta_h\right)\%\tilde{h}
\end{matrix}\right)\right|\\
&= \left|-\left(\begin{matrix}
\delta_g\\
\delta_h
\end{matrix}\right) + \left(\begin{matrix}
\left(\delta_g + \epsilon\delta_g +t(h-\tilde{h})\delta_g+t\left(g-\tilde{g}\right)\delta_h+t\delta_g\delta_h\right)\%\tilde{g}\\
\left(s\left(h-\tilde{h}\right)\delta_g+\left(1+\epsilon\right)\delta_h + s\left(g-\tilde{g}\right)\delta_h+s\delta_g\delta_h\right)\%\tilde{h}
\end{matrix}\right)\right|\\
%\left(
\Bigg[\left(\begin{matrix}
M_{1\_}\\
M_{2\_}
\end{matrix}\right)
&:=
\left(\begin{matrix}
\left(\delta_g + \epsilon\delta_g +t(h-\tilde{h})\delta_g+t\left(g-\tilde{g}\right)\delta_h+t\delta_g\delta_h\right)\\
\left(s\left(h-\tilde{h}\right)\delta_g+\left(1+\epsilon\right)\delta_h + s\left(g-\tilde{g}\right)\delta_h+s\delta_g\delta_h\right)
\end{matrix}\right)\Bigg]\\
&\approx \left|-\left(\begin{matrix}
\delta_g\\
\delta_h
\end{matrix}\right) +
\left(\begin{matrix}
M_{1\_} - \tilde{g}\cdot rev\left(rev\left(M_{1\_}\right)\cdot\dot{g}\right)\\
M_{2\_} - \tilde{h}\cdot rev\left(rev\left(M_{2\_}\right)\cdot\dot{h}\right)
\end{matrix}\right)\right|\\
\Bigg[M &= \left(\begin{matrix}
1+\epsilon+t(h-\tilde{h}) & t(g-\tilde{g})\\
s(h-\tilde{h}) & 1+\epsilon+s(g-\tilde{g})
\end{matrix}\right)
\left(\begin{matrix}
\delta_g\\
\delta_h
\end{matrix}\right)
+
\left(\begin{matrix}
t\delta_g\delta_h\\
s\delta_g\delta_h
\end{matrix}\right)\\
& =: Z \left(\begin{matrix}
\delta_g\\
\delta_h
\end{matrix}\right)
+
\left(\begin{matrix}
t\delta_g\delta_h\\
s\delta_g\delta_h
\end{matrix}\right)\\
\overline{a} &:= rev(a)\Bigg]\\
&= \left|-\left(\begin{matrix}
\delta_g\\
\delta_h
\end{matrix}\right) + M -
\left(\begin{matrix}
\tilde{g} & \\
& \tilde{h}
\end{matrix}\right)
\overline{\overline{M}
\left(\begin{matrix}
\dot{g} & \\
& \dot{h}
\end{matrix}\right)}\right|\\
&= \left|-\left(\begin{matrix}
\delta_g\\
\delta_h
\end{matrix}\right) + Z \left(\begin{matrix}
\delta_g\\
\delta_h
\end{matrix}\right)
+
\left(\begin{matrix}
t\delta_g\delta_h\\
s\delta_g\delta_h
\end{matrix}\right) -
\left(\begin{matrix}
\tilde{g} & \\
& \tilde{h}
\end{matrix}\right)
\overline{\overline{\left(Z \left(\begin{matrix}
\delta_g\\
\delta_h
\end{matrix}\right)
+
\left(\begin{matrix}
t\delta_g\delta_h\\
s\delta_g\delta_h
\end{matrix}\right)\right)}
\left(\begin{matrix}
\dot{g} & \\
& \dot{h}
\end{matrix}\right)}\right|
\end{align*}
%\printbibliography
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment