Skip to content
Snippets Groups Projects
Commit 2d3c50c9 authored by Krueger Jasmin's avatar Krueger Jasmin
Browse files

Finding lambda for the validation of Hensel

parent 3753cc5e
No related branches found
No related tags found
No related merge requests found
......@@ -402,6 +402,140 @@ Cherché: $\boldsymbol{g}, \boldsymbol{h} \in \mathbb{IK}[x,y]/(x^{k+1})$ tel qu
12. end for
\subsection*{Finding Lambda}
Nous voulons trouver $\Lambda$ tel que: \begin{equation*}
|N_P(x)-N_P(x')|\leq \Lambda(r) |x-x'|.
\end{equation*}
Nous avons $x = \left(\begin{matrix}
g\\
h
\end{matrix}\right)$
et $P(g,h) = gh-f$ et en conséquent
$N_P(g,h) = \left(\begin{matrix}
g\\
h
\end{matrix}\right)-
\left(\begin{matrix}
t(gh-f)\%\tilde{g}\\
s(gh-f)\%\tilde{h}
\end{matrix}\right)$.\\
Finalement, on arrive à
\begin{equation*}
|N_P(g,h) - N_P(g',h')| = \left|\left(\begin{matrix}
g-g'\\
h-h'
\end{matrix}\right)
+
\left(\begin{matrix}
t(-gh+g'h')\%\tilde{g}\\
s(-gh+g'h')\%\tilde{h}
\end{matrix}\right)\right|.
\end{equation*}
On sait que $\tilde{s}\tilde{g}+\tilde{h}\tilde{t} = 1$ et on a une approximation $s \approx \tilde{s}, t \approx \tilde{t}$ avec $s\tilde{g} + \tilde{h}t = 1 + \epsilon$.\\
Alors, nous regardons:
\begin{align*}
N_P(g+\delta_g,h+\delta_h) &=\left(\begin{matrix}
g\\
h
\end{matrix}\right)+ \left(\begin{matrix}
\delta_g\\
\delta_h
\end{matrix}\right) - \left(\begin{matrix}
t\left(\left(g+\delta_g\right)\left(h+\delta_h\right)-f\right)\%\tilde{g}\\
s\left(\left(g+\delta_g\right)\left(h+\delta_h\right)-f\right)\%\tilde{h}
\end{matrix}\right)\\
&=N_P(g,h) + \left(\begin{matrix}
\delta_g\\
\delta_h
\end{matrix}\right) - \left(\begin{matrix}
t\left(h\delta_g+g\delta_h+\delta_g\delta_h\right)\%\tilde{g}\\
s\left(h\delta_g+g\delta_h+\delta_g\delta_h\right)\%\tilde{h}
\end{matrix}\right).\\
\end{align*}
Regardons les parties de \begin{equation*}
\left(\begin{matrix}
t\left(h\delta_g+g\delta_h+\delta_g\delta_h\right)\%\tilde{g}\\
s\left(h\delta_g+g\delta_h+\delta_g\delta_h\right)\%\tilde{h}
\end{matrix}\right):
\end{equation*}
1.
\begin{align*}
th\delta_g\%\tilde{g} &= t\left(\tilde{h}\delta_g+\left(h-\tilde{h}\right)\delta_g\right)\%\tilde{g} = t\tilde{h}\delta_g\%\tilde{g} + t(h-\tilde{h})\delta_g\%\tilde{g}\\
&\overset{t\tilde{h} = 1+\epsilon - s\tilde{g}}{=} (1+\epsilon-s\tilde{g})\delta_g\%\tilde{g} +t(h-\tilde{h})\delta_g\%\tilde{g}\\
&\overset{s\tilde{g}\delta_g\%\tilde{g}=0}{=} (1+\epsilon)\delta_g\%\tilde{g} +t(h-\tilde{h})\delta_g\%\tilde{g}\\
&=\delta_g\%\tilde{g} + \epsilon\delta_g\%\tilde{g} +t(h-\tilde{h})\delta_g\%\tilde{g}
\end{align*}
2.
\begin{align*}
tg\delta_h\%\tilde{g} = t\left(\tilde{g}\delta_h +\left(g-\tilde{g}\right)\delta_h\right)\%\tilde{g} \overset{\tilde{g}\%\tilde{g}=0}{=} t\left(g-\tilde{g}\right)\delta_h\%\tilde{g}
\end{align*}
3.
\begin{align*}
t\delta_g\delta_h\%\tilde{g}
\end{align*}
4.
\begin{align*}
sh\delta_g\%\tilde{h} &= s\left(\tilde{h} + \left(h-\tilde{h}\right)\right)\delta_g\%\tilde{h} \overset{\tilde{h}\%\tilde{h}= 0}{=} s\left(h-\tilde{h}\right)\delta_g\%\tilde{h}
\end{align*}
5.
\begin{align*}
sg\delta_h\%\tilde{h} &= s\left(\tilde{g}+\left(g-\tilde{g}\right)\right)\delta_h\%\tilde{h}\\
&= s\tilde{g}\delta_h\%\tilde{h} + \left(g-\tilde{g}\right)\delta_h\%\tilde{h}\\
&\overset{s\tilde{g} = 1+\epsilon-t\tilde{h}}{=} \left(1+\epsilon-t\tilde{h}\right)\delta_h\%\tilde{h} + s\left(g-\tilde{g}\right)\delta_h\%\tilde{h}\\
&\overset{t\tilde{h}\%\tilde{h}=0}{=} \left(1+\epsilon\right)\delta_h\%\tilde{h} + s\left(g-\tilde{g}\right)\delta_h\%\tilde{h}
\end{align*}
6.
\begin{align*}
s\delta_g\delta_h\%\tilde{h}
\end{align*}
Comme $\left|\delta_g\right| < r_g$, $\left|\delta_h\right| < r_h$, $\left|g-\tilde{g}\right| < r_g$, et $\left|h-\tilde{h}\right| < r_h$,
nous avons:
\begin{align*}
\left|N_P(g,h)-N_P(g',h')\right| &= \left|N_P(g,h)-N_P(g+\delta_g,h+\delta_h)\right|\\
&= \left|N_P(g,h) - \left(N_P(g,h) + \left(\begin{matrix}
\delta_g\\
\delta_h
\end{matrix}\right) - \left(\begin{matrix}
t\left(h\delta_g+g\delta_h+\delta_g\delta_h\right)\%\tilde{g}\\
s\left(h\delta_g+g\delta_h+\delta_g\delta_h\right)\%\tilde{h}
\end{matrix}\right)\right)\right|\\
&= \left|-\left(\begin{matrix}
\delta_g\\
\delta_h
\end{matrix}\right) + \left(\begin{matrix}
t\left(h\delta_g+g\delta_h+\delta_g\delta_h\right)\%\tilde{g}\\
s\left(h\delta_g+g\delta_h+\delta_g\delta_h\right)\%\tilde{h}
\end{matrix}\right)\right|\\
&= \left|-\left(\begin{matrix}
\delta_g\\
\delta_h
\end{matrix}\right) + \left(\begin{matrix}
\left(\delta_g + \epsilon\delta_g +t(h-\tilde{h})\delta_g+t\left(g-\tilde{g}\right)\delta_h+t\delta_g\delta_h\right)\%\tilde{g}\\
\left(s\left(h-\tilde{h}\right)\delta_g+\left(1+\epsilon\right)\delta_h + s\left(g-\tilde{g}\right)\delta_h+s\delta_g\delta_h\right)\%\tilde{h}
\end{matrix}\right)\right|\\
& \leq \left(\begin{matrix}
r_g\\
r_h
\end{matrix}\right)
+
\left(\begin{matrix}
\left(r_g + \epsilon r_g +tr_hr_g+tr_gr_h+t r_g r_h\right)\%\tilde{g}\\
\left(s r_h r_g+\left(1+\epsilon\right)r_h + s r_g r_h+ s r_g r_h\right)\%\tilde{h}
\end{matrix}\right)\\
&= \left(\begin{matrix}
r_g\\
r_h
\end{matrix}\right)
+ \left(\begin{matrix}
\left((1+\epsilon)r_g + 3tr_gr_h\right)\%\tilde{g}\\
\left((1+\epsilon)r_h + 3sr_gr_h\right)\%\tilde{h}
\end{matrix}\right)
\end{align*}
%\printbibliography
\end{spacing}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment