Skip to content
Snippets Groups Projects
Commit 49ba2e40 authored by Krueger Jasmin's avatar Krueger Jasmin
Browse files

Hensel validation pseudocode

parent 335f503c
No related branches found
No related tags found
No related merge requests found
......@@ -391,10 +391,16 @@ Cherché: $g, h \in \mathbb{IK}[x,y]/(x^{k+1})$ tel que $g^*_{ij} \in g_{ij}, h^
\varepsilon \delta_{ij} & \text{if } \delta_{ij} > 0\\
\varepsilon \cdot \underset{\delta_{lm} > 0}{\min}\delta_{lm} & \text{if } \delta_{ij} = 0
\end{cases}$\\
4. for $t = 0,\dots,t_{max}$\\
5. \qquad $e \leftarrow gh-f\mod x^{k+1}$ \\
6. \qquad fastdivrem(se,g)\\
7.
4. for $i = 0,\dots,i_{max}$\\
5. \qquad $e \leftarrow g_ih_i-f\mod x^{k+1}$ \\
6. \qquad $q,r = $ fastdivrem(se,$h_i$)\\
7. \qquad $g_{i+1} \leftarrow g_i + te +qg_i \mod x^{k+1}$\\
8. \qquad $h_{i+1} \leftarrow h_i+r \mod x^{k+1}$\\
9. \qquad if $radius(h_{i+1}) - radius(h_i) < \eta_h$ and $radius(g_{i+1}) - radius(g_i) < \eta_g$\\
10.\qquad \qquad return $g_i,h_i$\\
11.\qquad end if\\
12. end for
%\printbibliography
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment