Skip to content
Snippets Groups Projects
Commit 240bf584 authored by Krueger Jasmin's avatar Krueger Jasmin
Browse files

pseudocode Hensel validation

parent 2ac6bbf1
No related branches found
No related tags found
No related merge requests found
......@@ -708,6 +708,78 @@ Comme $\left|\delta_g\right| < r_g$, $\left|\delta_h\right| < r_h$, $\left|g-\ti
% \end{align*}
Pour calculer $\Lambda$ explicitement, nous savons
\begin{align*}
|N_P(g,h)-N_P(g',h')| &\leq \sup_{\bar{g},\bar{h}\in \mathcal{B}(\tilde{g},\tilde{h},r)}|\nabla N_P(\bar{g},\bar{h})|\left|\begin{matrix}
g-g'\\
h-h'
\end{matrix}\right|
\end{align*}
\begin{equation*}
N_P(g,h) = \left(\begin{matrix}
g\\
h
\end{matrix} \right)
-\left(\begin{matrix}
t(gh-f)\%\tilde{g}\\
s(gh-f)\%\tilde{h}
\end{matrix}\right)
\end{equation*}
\begin{align*}
\nabla N_P(g,h)\left(\begin{matrix}
\delta_g\\
\delta_h
\end{matrix}\right) &=
\left(\begin{matrix}
\delta_g\\
\delta_h
\end{matrix}\right) - \left(\begin{matrix}
t(h\delta_g +g\delta_h)\%\tilde{g}\\
s(h\delta_g + g\delta_h)\%\tilde{h}
\end{matrix}\right)\\
&= \left|\left(\begin{matrix}
(\epsilon\delta_g+t(h-\tilde{h})\delta_g + t(g+\tilde{g})\delta_h)\%\tilde{g}\\
(\epsilon\delta_h +s(g-\tilde{g})\delta_h + s(h-\tilde{h})\delta_g)\%\tilde{h}
\end{matrix}\right)\right|\\
\Rightarrow \left|\nabla N_P(g,h)\left(\begin{matrix}
\delta_g\\
\delta_h
\end{matrix}\right) \right|
&\leq \left| \begin{matrix}
(\epsilon\delta_g + t([\pm r_h] \delta_g +[\pm r_g]\delta_g))\%\tilde{g}\\
(\epsilon\delta_h + s([\pm r_h]\delta_g +[\pm r_g]\delta_h))\%\tilde{h}
\end{matrix}\right|\\
&\leq \left| \begin{matrix}
(\epsilon[\pm r_g] + 2t[\pm r_h][\pm r_g])\%\tilde{g}\\
(\epsilon[\pm r_h] + 2s[\pm r_h][\pm r_g])\%\tilde{h}
\end{matrix}\right|\\
&= \Lambda(r)
\end{align*}
\subsection*{Pseudocode}
$L = \mathbb{K}[x]/(x^k)$\\
$IL = \mathbb{IK}[x]/(x^k)$\\
Problème : $f\equiv gh \mod x^k$\\
Connu : $f \in L[y]_{\leq m+n}$, et des approximations numériques $\tilde{g}\in L[y]_{\leq n}, \tilde{h}\in L[y]_{\leq m}$, $h$ unitaire, de $g$ et $h$.\\
Cherché : $\boldsymbol{g} \in IL[y]_{\leq n}, \boldsymbol{h}\in IL[y]_{\leq m}$ tel que $\tilde{g}_{i,j},g_{i,j}^* \in \boldsymbol{g}_{i,j}$ et $\tilde{h}_{i,j},h_{i,j}^* \in \boldsymbol{h}_{i,j}$\\
Nous avons $\delta = \left|\left( \begin{matrix}
t(\tilde{g}\tilde{h}-f)\%\tilde{g}\\
s(\tilde{g}\tilde{h}-f)\%\tilde{h}
\end{matrix}\right)\right|$ et $\mu(r) = \left|\left(\begin{matrix}
\left(\epsilon[\pm r_g] +3t[\pm r_h][\pm r_g]\right)\%\tilde{g}\\
\left(3s[\pm r_h][\pm r_g]+\epsilon[\pm r_h] \right)\%\tilde{h}
\end{matrix}\right)\right|$\\
Input: \\
Output:\\
1. $ q, r = fastdivrem(se,h)$\\
2. $\delta_h = r$\\
3. $\delta_g = te + qg$\\
4. $\mu = $
%\printbibliography
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment