Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pcg
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Bouillaguet Charles
pcg
Commits
e1d73825
Commit
e1d73825
authored
5 years ago
by
Julia Sauvage
Browse files
Options
Downloads
Patches
Plain Diff
FindRot a l'air de marcher à peu près
parent
f05af15b
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
Cunknown/FindDS.sage
+44
-19
44 additions, 19 deletions
Cunknown/FindDS.sage
Python/Cinconnu/Test.py
+6
-4
6 additions, 4 deletions
Python/Cinconnu/Test.py
Python/Cinconnu/fonctions.py
+6
-4
6 additions, 4 deletions
Python/Cinconnu/fonctions.py
with
56 additions
and
27 deletions
Cunknown/FindDS.sage
+
44
−
19
View file @
e1d73825
import time
import random as r
k = 64
known_up =
8
known_up =
6
known_low = 11
a = 2549297995355413924 * 2^64 + 4865540595714422341
nbiter = 5
...
...
@@ -61,15 +61,24 @@ def sortiesGenerateur():#OK !
return X,S,c
## Unrotate
def rotateX(X, rot):#OK !
rX = [];
for i in range(nbiter):
rX.append(((X[i] // 2**rot[i]) + ((X[i] * 2**(k - rot[i])) % 2**(k))))
return rX
def unrotateX(X, rot):#OK !
rot2 = []
for i in range(nbiter):
rot2.append((k - rot[i]) % k)
return rotateX(X, rot2)
def unrotate1(Xi):#OK !
return (Xi >> (k - 1)) | ((Xi << 1) % 2**k)
###### Sous-fonctions de FindDS######
def getY(W0, WC, rot, uX):#OK !
Y = [(((powA[i] * W0 + polA[i] * WC) % 2**known_low) ^^ (uX[i] % 2**known_low)) * 2**known_up + (rot[i] ^ (uX[i] // 2**(k - known_up))) for i in range(nbiter)]
Y = [(((powA[i] * W0 + polA[i] * WC) % 2**known_low) ^^ (uX[i] % 2**known_low)) * 2**known_up + (rot[i] ^
^
(uX[i] // 2**(k - known_up))) for i in range(nbiter)]
return Y
def getYprim(Y, WC, W0): #OK ! avec erreurs de retenues ~64bits (polC polW)
...
...
@@ -86,28 +95,28 @@ def FindDS64(uX, rot, W0,WC, invG, Greduite): #rajouter rot dans la version non
#polW = getPolW(W0)
Y = getY(W0, WC, rot, uX)
DY = getDY(Y, WC, W0) #OK avec erreurs de retenues!
tmp = [y * 1<<(k - known_up - known_low) for y in DY]#on rajoute les zéros, recentrage impossible à cause des erreurs de retenues
u = prodMatVec(invG, tmp)
DS64 = prodMatVec(Greduite, [round(u_) for u_ in u])
tmp = vector([y * 1<<(k - known_up - known_low) for y in DY])#on rajoute les zéros, recentrage impossible à cause des erreurs de retenues
u = invG * tmp
tmp = vector([round(u_) for u_ in u])
DS64 = Greduite * tmp
return DS64, Y[0]
######FINDROTI######
#DS64ij = ((polA[j] - polA[i])*DSmod0) % 2**k
def FindRoti(DS640, X, i, Y0, W0,WC):#OK !
DS640i = (polA[i] * DS640) % 1<<k
DSmod0i = ((DS640i << known_low) + W0 * powA[i] + WC * polA[i] - WC - W0) % 1<<(k +known_low)
DS640i = (polA[i] * DS640) %
(
1<<k
)
DSmod0i = ((DS640i << known_low) + W0 * powA[i] + WC * polA[i] - WC - W0) %
(
1<<(k +known_low)
)
# Yi = vraiYi ou vraiYi - 1 à cause de la retenue
Yi1 = (Y0 + (DSmod0i >> (k - known_up))) % (1 << (known_low + known_up))#avec ou sans retenue
Yi2 = Yi1 + 1
Wi = (W0 * powA[i] + WC * polA[i]) % (1 << known_low)
roti = []
for i in range(1<<known_up):
test1 = (((X ^^ (Yi1 >> known_up)) % (1 << known_low)) == Wi) and ((i ^^ (X >> (k - known_up))) == Yi1 % (1 << known_up))
test2 = (((X ^^ (Yi2 >> known_up)) % (1 << known_low)) == Wi) and ((i ^^ (X >> (k - known_up))) == Yi2 % (1 << known_up))
for j in range(k):
test1 = (((X ^^ (Yi1 >> known_up)) % (1 << known_low)) == Wi) and ((j ^^ (X >> (k - known_up))) == Yi1 % (1 << known_up))
test2 = (((X ^^ (Yi2 >> known_up)) % (1 << known_low)) == Wi) and ((j ^^ (X >> (k - known_up))) == Yi2 % (1 << known_up))
if (test1 or test2) :
roti.append(
i
)
roti.append(
j
)
X = unrotate1(X)
return roti
...
...
@@ -115,7 +124,6 @@ def FindRot(DS640,X, Y0, W0, WC): #OK !
tabrot =[]
for i in range(nboutput):
tabrot.append(FindRoti(DS640, X[i], i, Y0, W0,WC))
#print(rot[i])
if(len(tabrot[i]) == 0):
return []
return tabrot
...
...
@@ -138,22 +146,39 @@ def reclistDS(rot, tabrot, Greduite, invG, i):
reclistDS(rot, tabrot, Greduite, invG, i+1)
######## ATTENTION CHANGEMENT DE KNOWN_UP DANS LA DEUXIEME PARTIE A RAJOUTER (POUR LE MOMENT 4% DE REUSSITE)
cpt = 0
for blabla in range(100):
cptcaca = 0
n = 100
#X, S,c = sortiesGenerateur()
for blabla in range(n):
X, S,c = sortiesGenerateur()
'''S=[220067743408853083834432663492647924634, 112503624697201186132469432313340913105, 33070803253007555749993969362658379940, 35318588621369721769182944551411264899, 54991440612027928576873122139768989598, 47538704919747031563607958508390548197, 91156825524452312269810980025165534984, 190824859903544703899471694992400459383, 38874876137985470619763820511870859618, 64791713507446872465937656292282148025, 294090808745917593199968036533303913772, 315273188514388247052667989579897108011, 146787731095195396413033318376746527974, 164532907873775087130926638971532123981, 173700024418981159727549716057111293712, 23840220537461389100772757981679112351, 46659078186011266165472604466461050410, 313115986957003247559634900410071778977, 227881076862105013576926553620126892212, 70006717902022074106179881199979768275, 289258840690156709447527284175095859502, 56879124262013452953008030880000519861, 316795414608248439673818158092187600408, 59351450445612133872438406299462153671, 186880662189473910477044351264016775666, 277302539518883431731773036020970072969, 82600957186847994668020678283213628220, 151784061338883303035759958597934311547, 206823526372995454747724627405580295286, 28223378172317009660412702788180365597, 12739604823225005124700000810730175520, 16831678967949771189519624510262146543, 271393882131248243466756700825368622266, 68326809168772142356935776901049660273, 309598890522762081774973503767990138052, 209697506431394647557286116117164151331, 105155195295356684194249578230279063230, 221667337660693641165849231927196329605, 233097928176036716819591567459546476840, 272924052702129294765082210153888592151, 91129619453905078559147110509515658882, 63377152918107694906757553304785108569, 294054731393013789972178074795267020108, 253719199431407855909971754107928086219, 59661279118893870487270161964263430, 178396699745197382647769246191192755949, 201745583743782479815214201123581723952, 74892753420231538901722059163882030911, 177955269268871404901708611564527746890, 207665034063131991058504413035301530689, 47117448182691552899761748985415214292, 251926336138690226422699058879135819379, 21920620081427058626566501047880998990, 40948628947981751362611318648522238549, 32116981397549781675773852884272601144, 106288622746785276824399697227695888487, 201073164687507533771413717104135802642, 58961305818240342487781420609098046761, 187035094740902698165439775091290735452, 69422795159989247128671625798743347483, 276959103400102038626544844533336428438, 317123296078865307906856881906558802109, 118316234464440768984876141167085046336, 126193093290319439721049830417807705231, 34684565338716933495113128325484258778, 326378529669664343157243240643812339985, 162505873010365714377435760638464233700, 307535243887430424915177821865908709059, 78767001966858986938796323773249115614, 21736014639309382806788004864916978213, 8142198067967511710430496940691127112, 136188421447787428082529779636748217271, 13179930448133522724352488728920384418, 160094123823456764963244619365507303417, 53060966375170460616907241456842009964, 170180072120591957689091167459317761899, 65026522976846060429187948316255523622, 83566908335272890981149727502246489741, 270069377698424539894181982339105131344, 193955648050196766089274953448106290655, 32072259075417170632365625341048776810, 205437048412619765117504993218429125089, 243657878380664846762561218425381009652, 314216884007772061687507879854358549267, 21547734106510126849007993088959326062, 230253912715678204184254042244291876341, 157944739117106803635148773159220517464, 315798993574797912333738059736406600455, 45457985452003221673136408084188386354, 59295338576499191094609957907096420041, 128792130176093318697121508601986126716, 296075200772520420340407948443437853115, 112774076083656296079640508595728986806, 95344702128222893177698901566092775517, 327779169479173880722002966336532367456, 269142690424119837588986706253897581359, 180383975778043342747205834782296983290, 82585949069028235074631213165627170481, 31789759884880583406898243922254535940, 138763445006281736497419485367578766179]
X = [17099247870330544821, 16525103287338961485, 11099656327266378479, 12055115514965039945, 17887463174005398724, 4611123349176750712, 2075105015530151500, 15239333725326666040, 14165384593400087487, 12519617651531483088, 1780396078768754951, 12699182327927150888, 9628453482698168762, 11813763596395810233, 14881824412991243135, 1682573487323464792, 4384076074220673263, 4923528015372149758, 14282120475191192947, 5407260697446029608, 17051141290474895802, 10519950859929026191, 481368816847871653, 3419869433593986181, 12983290356420683108, 4479923122072191002, 7675952009716311104, 14768314493459496986, 16472672032264156961, 11818772373653359090, 7074120885317410807, 11785158919831506410, 14632691056944267677, 8967982178209062503, 173462718409918877, 15363366419280554619, 14158293927737683038, 2267312972508208072, 12156733958553475580, 11993627971977223404, 16865450475530744192, 9548502980228519440, 14635231067447576866, 1166987275388077361, 14911640411815652225, 1518717880322558154, 1595208010432098988, 17479810013643169011, 16996158924197106291, 15193903901533608407, 843739323743355506, 4264607173903082746, 15534134269290595982, 14866162827784656523, 9883531286508197585, 4866196585758766091, 11452062470478584507, 13299462915787461477, 10454630191204377309, 11632893096100269780, 18305520658513546500, 10648312647800178847, 12835483404871454700, 2851658131835677583, 8216375208867992861, 3813369708647954239, 7877667273655419317, 13072779077845899809, 10962300773519409894, 9388710522349168531, 3050768160949405003, 2534657346251670163, 8180956873183289402, 3766969403493682255, 2732179285267643195, 10312233510784761965, 16920954203147627681, 2312806156915377015, 6079353777730460085, 17635002723201099721, 1114597417050190918, 2926054708721230420, 109602765696320229, 14465421040439468496, 142973387807330164, 5723286195345337151, 16787351955748614244, 16673086541245644531, 8321418753268142321, 7132851848164282239, 12949467371250136223, 218193002640928139, 15065709450458240240, 16702592102178704950, 8383758642546182535, 5402230448090676989, 2020867650377135263, 7710107756126330364, 3209169197681352040, 3131521885099742207]
c = 117397592171526113268558934119004209487'''
W0 = S[0] % (1 << known_low)
WC = c % (1 << known_low)
rot =[]
for i in range(nboutput):
rot.append(S[i] >> (2 * k - known_up))
Sprim = [(S[i] - polA[i] * (c % 1<<known_low) - powA[i] * (S[0] % 2^known_low)) % 2^128 for i in range(nboutput)]
uX = unrotateX(X,rot)
DS64, Y0 = FindDS64(uX, rot, W0,WC, invG1, Greduite1)#OK!
tabrot = FindRot(DS64[0],X, Y0, W0, WC)#a l'air OK!
if(len(tabrot) == 0):
cptcaca += 1
DS = findDS(rot, Greduite2, invG2)
Sprim = [(S[i] - polA[i] * (c % 1<<known_low) - powA[i] * (S[0] % 2^known_low)) % 2^128 for i in range(nboutput)]
if(DS[0] == ((Sprim[1] - Sprim[0]) >> known_low)):
cpt += 1
#print(DS[0])
#print(12615681514276467327 * 2^64 + 8299778918817149495)
print(n
boutput
)
print(n)
print(cpt)
print(cptcaca)
This diff is collapsed.
Click to expand it.
Python/Cinconnu/Test.py
+
6
−
4
View file @
e1d73825
from
fonctions
import
*
X
,
S
,
c
=
sortiesGenerateur
()
'''
S=[220067743408853083834432663492647924634, 112503624697201186132469432313340913105, 33070803253007555749993969362658379940, 35318588621369721769182944551411264899, 54991440612027928576873122139768989598, 47538704919747031563607958508390548197, 91156825524452312269810980025165534984, 190824859903544703899471694992400459383, 38874876137985470619763820511870859618, 64791713507446872465937656292282148025, 294090808745917593199968036533303913772, 315273188514388247052667989579897108011, 146787731095195396413033318376746527974, 164532907873775087130926638971532123981, 173700024418981159727549716057111293712, 23840220537461389100772757981679112351, 46659078186011266165472604466461050410, 313115986957003247559634900410071778977, 227881076862105013576926553620126892212, 70006717902022074106179881199979768275, 289258840690156709447527284175095859502, 56879124262013452953008030880000519861, 316795414608248439673818158092187600408, 59351450445612133872438406299462153671, 186880662189473910477044351264016775666, 277302539518883431731773036020970072969, 82600957186847994668020678283213628220, 151784061338883303035759958597934311547, 206823526372995454747724627405580295286, 28223378172317009660412702788180365597, 12739604823225005124700000810730175520, 16831678967949771189519624510262146543, 271393882131248243466756700825368622266, 68326809168772142356935776901049660273, 309598890522762081774973503767990138052, 209697506431394647557286116117164151331, 105155195295356684194249578230279063230, 221667337660693641165849231927196329605, 233097928176036716819591567459546476840, 272924052702129294765082210153888592151, 91129619453905078559147110509515658882, 63377152918107694906757553304785108569, 294054731393013789972178074795267020108, 253719199431407855909971754107928086219, 59661279118893870487270161964263430, 178396699745197382647769246191192755949, 201745583743782479815214201123581723952, 74892753420231538901722059163882030911, 177955269268871404901708611564527746890, 207665034063131991058504413035301530689, 47117448182691552899761748985415214292, 251926336138690226422699058879135819379, 21920620081427058626566501047880998990, 40948628947981751362611318648522238549, 32116981397549781675773852884272601144, 106288622746785276824399697227695888487, 201073164687507533771413717104135802642, 58961305818240342487781420609098046761, 187035094740902698165439775091290735452, 69422795159989247128671625798743347483, 276959103400102038626544844533336428438, 317123296078865307906856881906558802109, 118316234464440768984876141167085046336, 126193093290319439721049830417807705231, 34684565338716933495113128325484258778, 326378529669664343157243240643812339985, 162505873010365714377435760638464233700, 307535243887430424915177821865908709059, 78767001966858986938796323773249115614, 21736014639309382806788004864916978213, 8142198067967511710430496940691127112, 136188421447787428082529779636748217271, 13179930448133522724352488728920384418, 160094123823456764963244619365507303417, 53060966375170460616907241456842009964, 170180072120591957689091167459317761899, 65026522976846060429187948316255523622, 83566908335272890981149727502246489741, 270069377698424539894181982339105131344, 193955648050196766089274953448106290655, 32072259075417170632365625341048776810, 205437048412619765117504993218429125089, 243657878380664846762561218425381009652, 314216884007772061687507879854358549267, 21547734106510126849007993088959326062, 230253912715678204184254042244291876341, 157944739117106803635148773159220517464, 315798993574797912333738059736406600455, 45457985452003221673136408084188386354, 59295338576499191094609957907096420041, 128792130176093318697121508601986126716, 296075200772520420340407948443437853115, 112774076083656296079640508595728986806, 95344702128222893177698901566092775517, 327779169479173880722002966336532367456, 269142690424119837588986706253897581359, 180383975778043342747205834782296983290, 82585949069028235074631213165627170481, 31789759884880583406898243922254535940, 138763445006281736497419485367578766179]
X = [17099247870330544821, 16525103287338961485, 11099656327266378479, 12055115514965039945, 17887463174005398724, 4611123349176750712, 2075105015530151500, 15239333725326666040, 14165384593400087487, 12519617651531483088, 1780396078768754951, 12699182327927150888, 9628453482698168762, 11813763596395810233, 14881824412991243135, 1682573487323464792, 4384076074220673263, 4923528015372149758, 14282120475191192947, 5407260697446029608, 17051141290474895802, 10519950859929026191, 481368816847871653, 3419869433593986181, 12983290356420683108, 4479923122072191002, 7675952009716311104, 14768314493459496986, 16472672032264156961, 11818772373653359090, 7074120885317410807, 11785158919831506410, 14632691056944267677, 8967982178209062503, 173462718409918877, 15363366419280554619, 14158293927737683038, 2267312972508208072, 12156733958553475580, 11993627971977223404, 16865450475530744192, 9548502980228519440, 14635231067447576866, 1166987275388077361, 14911640411815652225, 1518717880322558154, 1595208010432098988, 17479810013643169011, 16996158924197106291, 15193903901533608407, 843739323743355506, 4264607173903082746, 15534134269290595982, 14866162827784656523, 9883531286508197585, 4866196585758766091, 11452062470478584507, 13299462915787461477, 10454630191204377309, 11632893096100269780, 18305520658513546500, 10648312647800178847, 12835483404871454700, 2851658131835677583, 8216375208867992861, 3813369708647954239, 7877667273655419317, 13072779077845899809, 10962300773519409894, 9388710522349168531, 3050768160949405003, 2534657346251670163, 8180956873183289402, 3766969403493682255, 2732179285267643195, 10312233510784761965, 16920954203147627681, 2312806156915377015, 6079353777730460085, 17635002723201099721, 1114597417050190918, 2926054708721230420, 109602765696320229, 14465421040439468496, 142973387807330164, 5723286195345337151, 16787351955748614244, 16673086541245644531, 8321418753268142321, 7132851848164282239, 12949467371250136223, 218193002640928139, 15065709450458240240, 16702592102178704950, 8383758642546182535, 5402230448090676989, 2020867650377135263, 7710107756126330364, 3209169197681352040, 3131521885099742207]
c = 117397592171526113268558934119004209487
'''
W0
=
S
[
0
]
%
2
**
known_low
rot
=
[
S
[
i
]
//
2
**
(
k
*
2
-
known_up
)
for
i
in
range
(
nbiter
)]
uX
=
unrotateX
(
X
,
rot
)
print
(
"
uX
"
)
print
(
uX
)
W0
=
S
[
0
]
%
2
**
known_low
print
(
W0
)
WC
=
c
%
2
**
known_low
Y
=
getY
(
W0
,
WC
,
rot
,
uX
)
...
...
This diff is collapsed.
Click to expand it.
Python/Cinconnu/fonctions.py
+
6
−
4
View file @
e1d73825
...
...
@@ -35,10 +35,10 @@ def prodMatMat(M1,M2):
###### Redéfinition du PCG_128 (avec C aléatoire) ######
def
sortiesGenerateur
():
#OK !
#
c = (r.randint(0, 2**(2 * k)) * 2 + 1) % 2**(2 * k) #c est impair
#
S=[r.randint(0,2**(k * 2))]
c
=
6364136223846793005
*
2
**
64
+
1442695040888963407
#increment par defaut de pcg (connu)
S
=
[
8487854484825256858
+
11929896274893053136
*
2
**
64
]
c
=
(
r
.
randint
(
0
,
2
**
(
2
*
k
))
*
2
+
1
)
%
2
**
(
2
*
k
)
#c est impair
S
=
[
r
.
randint
(
0
,
2
**
(
k
*
2
))]
#
c=6364136223846793005*2**64+1442695040888963407#increment par defaut de pcg (connu)
#
S=[8487854484825256858 + 11929896274893053136 * 2**64]
for
i
in
range
(
nboutput
-
1
):
S
.
append
((
S
[
i
]
*
a
+
c
)
%
2
**
(
2
*
k
))
X
=
[]
...
...
@@ -104,6 +104,8 @@ def FindDS64(uX, rot, W0,WC): #rajouter rot dans la version non test ? #OK! ~64b
def
FindRoti
(
DS640
,
X
,
i
,
Y0
,
W0
,
WC
):
#OK !
DS640i
=
(
polA
[
i
]
*
DS640
)
%
2
**
k
DSmod0i
=
((
DS640i
<<
known_low
)
+
W0
*
powA
[
i
]
+
WC
*
polA
[
i
]
-
WC
-
W0
)
%
2
**
(
k
+
known_low
)
print
(
"
DS640i
"
)
print
(
DS640i
)
# Yi = vraiYi ou vraiYi - 1 à cause de la retenue
Yi1
=
(
Y0
+
(
DSmod0i
>>
(
k
-
known_up
)))
%
(
1
<<
(
known_low
+
known_up
))
#avec ou sans retenue
Yi2
=
Yi1
+
1
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment