Formal modeling and analysis of an avionics
triplex sensor voter *

Samar Dajani-Brown, Darren Cofer, Gary Hartmann, and Steve Pratt

Honeywell Laboratories, Minneapolis MN
samar.dajani-brown@honeywell.com

Abstract. Digital flight control systems utilize redundant hardware to
meet high reliability requirements. In this study we use the SMV model
checker to assess the design correctness of a sensor voter algorithm used
to manage three redundant sensors. The sensor voter design is captured
as a Simulink diagram. The requirements verified include normal opera-
tion, transient conditions, and fault handling.

The sensor voter algorithm is a realistic example of flight critical em-
bedded software used to manage redundant air data or inertial reference
sensors. We are using it to evaluate different design methods, languages,
and tools currently available for formal verification. Key issues are 1) in-
tegration of formal verification into existing development processes and
tools, and 2) synthesis of the correct environment (world abstraction)
needed for analysis of normal and off-normal operating conditions.

1 Redundant sensors in flight control

Early autopilots were allowed a minimum of control authority so they would
not cause any serious disturbances if any component failed; they could easily
be overpowered by pilot inputs. As the need for aircraft stability and precise
flight path following increased, so did flight control authority. This lead to the
need for monitoring and the addition of redundant sensors and monitor points to
provide the needed information for failure detection (which would then automat-
ically disengage the system). Over time this evolved into a completely redundant
channel of sensors and control electronics. At the same time there was a growing
demand for increased mission reliability and the need for fail-operative systems
arose.

A key part of redundant systems focuses on managing redundant sensors to
provide a high integrity measurement for use by down-stream control calcula-
tions. Cross-strapping sensors so downstream processing has access to multiple
copies of the same variable is an important feature. The advantage of cross-
strapping sensors among redundant control channels to improve system avail-
ability (or mission success) was recognized in the 1960s but was not exploited
due to the limitations of the analog implementations. With the advent of digital

* This work has been supported in part by NASA contract NAS1-00079.

flight control it was recognized that fault detection and isolation could be im-
plemented in software. The main advantage of the digital flight control systems
which appeared in the mid 1970s compared to earlier analog systems was the
ability to handle monitoring, redundancy management, and built-in-test without
adding more hardware.

Throughout the 1970s and 1980s many papers appeared describing various
algorithms for managing redundant systems and redundant sensors. The NATO
Advisory Group for Aerospace Research and Development (AGARD) has spon-
sored several publications and lecture series dealing with redundancy manage-
ment in flight control [1],[2],[3]. A recent paper on the subject appears in [4] and
textbooks such as [5] now contain chapters on redundancy management in flight
control systems.

Many sensors include some internal monitors and provide a logic output to
indicate that an internal hardware fault has been identified. These monitors
provide on the order of 90 - 95 % failure detection without false alarms. Internal
monitors are usually specific to a sensor type. Examples of such internal monitors
include checks on power supply voltages, checks on whether ring laser gyros are
“lasing”, checks on whether vibrating beam accelerometers are at the proper
resonant frequency and so forth. If these sensor valid signals are set “false”, then
the sensor is not used regardless of voter or comparitor algorithm decisions [4].
However, these valid flags are not adequate for detecting all sensor faults; hence
the need for real-time software monitors operating at the sampling rate of the
Sensors.

Sensors exhibit various kinds of deterministic and non-deterministic errors
including bias offsets, scale factor errors, and sensitivity to spurious input and
environmental factors. The question of what constitutes a “failed” sensor in-
volves certain subtleties. These are reflected in the fact that situations exist,
such as when the quantity being measured is zero, in which the behavior of a
perfectly functioning instrument is indistinguishable from the behavior of one
that is not working. In practice, sensors often fail by small degrees so that the
indicated measurement becomes contaminated with nearly unobservable errors.
For operational purposes, we can define a sensor as failed when it is contributing
measurement, errors sufficiently large as to jeopardize the mission. What this
imposes on the sensor redundancy management is the requirement that it be
able to isolate or tolerate any failure large enough to jeopardize the mission.

Sensor failure detection algorithms (“voters”) must detect and isolate a sen-
sor whose output departs by more than a specified amount from the normal
error spread. The detailed design of the voter algorithm combined with the
downstream control law determines the magnitude of the transient the aircraft
may experience as a result of the failed sensor being disconnected. Thus two
conflicting requirements emerge:

1. Provide a very low number of nuisance disconnections — if the thresholds are
too low a sensor can be disconnected when it is merely at the edge of its
tolerances. To further minimize nuisance trips many algorithms may require
errors to “persist” for some amount of time before declaring a fault.

2. Provide a minimum transient on disconnecting a failed sensor — if the thresh-
olds are too high when a real failure occurs the magnitude of the resulting
transient can be unacceptably large.

The generic voter used in this study is representative of algorithms in use.
Many of its features are taken from [4]. This class of algorithm is applicable
to a variety of sensors used in modern avionics, including rate gyros, linear
accelerometers, stick force sensors, surface position sensors, and air data sensors
(e.g. static and dynamic pressures and temperature). Sensor sample rates are
based on the bandwidth of the control loops using the measurements; typical
values in flight control applications range from 10 - 100 Hz.

Traditionally, the performance of sensor management algorithms are evalu-
ated using simulated sensor failures together with a detailed Failure Modes and
Effects Analysis (FMEA) to tune design parameters and establish the correct-
ness of the design. However, this approach cannot guarantee that the worst case
combination of sensor inputs and conditions has been identified and that the
design meets its performance and safety requirements under these conditions.
In this study we will apply formal methods instead of extensive simulations to
establish the correctness of the design.

2 Sensor voter

Simulink [11] is a computer aided design tool widely used in the aerospace in-
dustry to design, simulate, and autocode software for avionics equipment. The
Simulink diagram representing the sensor management algorithm (Figure 1) in-
corporates the typical attributes of a sensor management algorithm and is in-
tended to illustrate the characteristics of such algorithms. The design is that of a
generic triplex voter utilizing features appearing in the open literature. The voter
takes inputs from three redundant sensors and synthesizes a single reliable sen-
sor output. Each of the redundant sensors produces both a measured data value
and self-check bit (validity flag) indicating whether or not the sensor considers
itself to be operational. The output of a sensor is amplitude limited in hardware
by the A/D conversion (+/-20 in the Simulink model). The functionality of the
triplex voter is as follows:

1. Sample digitized signals of each sensor measurement at a fixed rate appropri-
ate for the control loop, e.g. 20 Hz. A valid flag supplied by sensor hardware
indicating its status is also sampled at the same rate.

2. Use the valid flag and comparison of redundant sensor measurements to
detect and isolate failed sensors.

3. Output at a specified sample rate a signal value computed as a composite
average of the signals of non-faulty sensors. Also output, at the same specified
rate, the status of the composite output by setting an “outputValid” flag.

4. Tolerate “false alarms” due to noise, transients, and small differences in
sensor measurements. Sensors are not marked failed if they are operating
within acceptable tolerances and noise levels.

eppq un

€000
s1eduioosi Asu PUE ‘PIfEA 81 Si0SUBS oMl AIUO Jf

A

[enbgioiereeiy WEISIOD s Zxnnep

o
PIEAINGING Lpuyionmen

uoisienuo) sdh | ElRq

Lo

ghequn Leeg N

o115 ussoid & a2y gpuyIopen
3US80p pUE PIEA 51
105U85 8U0 1580 18

Lo

E peep o100 epuyionon 1egn
—]
preAsed
g
2000 gpuyiopen '
ponoLLo. o |4 Jougsied ¢
PoUILOPI 5| 10 ‘PIIBALI 51 105005 AL J
o105 5
- oprubepeL
osysied
'Al il © PIEA
g
d
. vpuyiopen MW ' PlULEoUaI3ISIa
o &)
Jouzwe: ¢ PiyLBe
= &B)
sou1e1
voi00 x e e 15z
e B
p— €D, 9xninep
JuEsuon

ERgIndnoeNY
osimEl
LLOUNS punoin

ASl Al—

I
3 I

Fig. 1. Simulink diagram of the sensor voter.

5. Maximize the availability of valid output by providing an output whenever
possible, even with two failed sensors.

6. The algorithm is not required to deal with simultaneous sensor failures since
this is a very low probability event.

Sensor faults can be any combination of sudden bias shifts, ramps, or os-
cillatory faults up to a maximum amplitude of 20. Oscillatory faults are often
specifically defined. For this example, oscillatory sensor failures in the frequency
range 3 - 7 Hz with amplitudes equal to or greater than 2 unit (zero to peak)
should be detected in 1.5 second or less. In general, the “worst case” failure is
unknown.

The operation of the sensor voter algorithm is as follows. All valid sensor
signals are combined to produce the voter output. If three sensors are available,
a weighted average is used in which an outlying sensor value is given less weight
than those that are in closer agreement. If only two sensors are available a simple
average is used. If only one sensor is available, it becomes the output.

There are two mechanisms whereby a faulty sensor may be detected and
eliminated: comparison of the redundant sensor signals and monitoring of the
validity flags produced by the sensors themselves.

The differences between each pair of the three input signals are initially
computed; i.e., signal one is subtracted from signal two, signal two from signal
three and signal three from signal one. These differences then pass through a
limiter and a lag filter to remove unwanted noise. In our current version of the
model the limiter and lag filter have been disabled since they have no effect given
the range of inputs we are considering. Differences that exceed a given magnitude
threshold cause a counter in the persistence threshold block to increment by one.
Differences below the threshold cause the counter to decrement, but not below
zero. When the counter reaches the persistence threshold for two of the pair
differences, a persistent miscompare is detected and the sensor that is common
to the two pairs is then eliminated from the output average computation.

If the hardware valid signal produced by a sensor is false for three consecutive
samples, that sensor is considered to be faulty. The faulty sensor signal is not
used in failure comparisons or in the computation of the output signal.

3 Requirements

Behavioral requirements for the sensor voter fall into two categories:

1. Computational, relating to the value of the output signal computed by the
voter.

2. Fault handling, relating to the mechanisms for detecting and isolating sensor
failures.

Each of these categories includes requirements for reliability (correctness under
normal operation) and robustness (rejection of false alarms).

3.1 Computational requirements

The main purpose of the sensor voter is to synthesize a reliable output that agrees
with the “true” value of the environmental data measured by the redundant
sensors. Therefore under normal operation, the output signal should agree with
this true value within some small error threshold. In the absence of sensor noise
or failures the two values should agree exactly. During the interval between the
failure of a sensor and the detection of the failure by the voter, it is expected that
the output value will deviate from the true value due to the continued inclusion
of the failed sensor in the output average. During this reconfiguration interval
the transient error in the output signal must remain within specified bounds,
regardless of the type or magnitude of the failure.

The acceptable transient error has bounds in both magnitude and time, and
is different for the first and second faults detected. The first failure transient
must not exceed a magnitude of 0.1 with a duration of less than 0.15 seconds
(corresponding to three sample periods at 20Hz). The second fault transient
must not exceed 10 units with a duration of less than 0.5 seconds (10 samples).
These bounds assume that the sensor inputs are limited to +/- 20 units (based
on the A/D scaling).

3.2 Fault handling requirements

An important early step in our work was to elicit a precise specification for the
fault handling behavior of the voter based on the informal description provided.
This resulted in the fault handling state machine shown in Figure 2. Initially, all
three sensors are assumed to be valid. One of these sensors may be eliminated
due to either a false hardware valid signal from the sensor or a miscomparing
sensor value, leading to the “2 valid” state. If one of the two remaining sensors
sets its hardware valid signal false, it is eliminated leading to the “1 valid” state.
If this sensor subsequently sets its valid flag false it is eliminated and the voter
output is set to not valid.

A special situation occurs when there are two valid sensors. If these sensors
miscompare, the voter cannot determine which may be faulty. Although there
are other possibilities, this voter algorithm continues to keep both sensors in
service but it sets its output valid flag false. If the sensors subsequently agree
in value, the voter returns to the “2 valid, no miscompare” state and sets its
output valid flag to true. Alternatively, if one of the two sensors identifies itself
as faulty (via the hardware valid flag) it can be isolated by the voter and the
other sensor signal used as the correct output value. If there are only two valid
sensors and they have a persistent miscompare, neither sensor is used and the
voter output valid flag is set to false. The output valid flag is also set to false if
no sensors are valid. In these cases, the output signal is set arbitrarily to zero.

Robustness requirements apply to both the sensor signal comparisons and the
hardware valid flags. No sensor is eliminated until it miscompares with others by
a magnitude of at least 0.6 units for at least 0.5 seconds. In addition, any valid
flags set to false must persist for three consecutive samples before the sensor is
eliminated.

Valid sensor goes 1 valid sensor goes
(hardware) invalid (hardware) invalid

Sy S3)
0 valid sensors 1 valid sensor 2 valid sensors
Output not valid Output valid Miscompare,
QOutput not valid

1 valid sensor goes
(hardware) invelid

Valid sensors have

1 valid sensor goes

syl (Both are stil valid)

Sp
3 valid sensors
Output valid

s
1
2 valid sensors

No miscompare,
Qutput valid

Two pairs of valid sensors
have persistent miscompare.
Eliminate common sensor.

Fig. 2. Fault states of the sensor voter.

4 Modeling the voter and its environment

SMYV is a symbolic model checker developed by CMU and was primarily devel-
oped with hardware verification problems in mind [6], [8]. While Simulink models
are generally implemented in software (manually or using automatic code gen-
eration tools), the data flow block diagram representation resembles a hardware
design. Therefore, it seems reasonable to apply SMV to this problem.

The SMV model we developed captures the design of the sensor voter by
directly translating the Simulink diagram into SMV. Each Simulink block cor-
responds to an SMV module with the same inputs and outputs (Figure 3). As
a result, the SMV representation is easy to understand and trace to the original
Simulink representation. Furthermore, it should be possible to automate most
of the translation process. We are aware of research tools such as sf2smv [9] and

MODULE andGateVector(inl, in2)
VAR
out : array 0 .. 2 of boolean;
S ASSIGN
—P out out[0] := in1[0] & in2[0];
andGateVector out[1] := in1[1] & in2[1];
out[2] := in1[2] & in2[2];

Fig. 3. Typical Simulink block translated to SMV module.

Checkmate [10] that have been developed to automatically translate Simulink
models into SMV for model checking and representation of counterexamples.
However, these tools address only limited portions of the Simulink syntax and

were not applicable to our problem. Our concern in this project is not so much
the translation process, but the applicability of model checking to problems of
this type.

4.1 Environment

The overall SMV model for verification of the sensor voter is shown in Figure 4.
The model includes new modules that represent the environment driving the
voter. These modules are the sensor modules and the world module.

The world module generates the data that sensors are to measure. In our
current model it produces arbitrary data within the valid range, but it could
easily be modified to produce data conforming to some frequency or derivative
limitations.

The modules sensorl, sensor2, and sensor3 represent physical sensors that
generate the measured signal and valid flags that are provided to the voter.
These sensor modules are also used to inject faulty behavior to test the ability
of the voter to identify and isolate failed sensors.

The sensorVoter module is the only part of the model corresponding to the
real system we wish to analyze. It is implemented as two large modules and a
number of small modules, following the hierarchical Simulink representation. Its
outputSignal value can be compared to the data produced by the world module
to evaluate the performance of the voter.

The distinction between the system under study (the voter) and its envi-
ronment (the world and sensors) is an important one. To produce a convincing
argument in support of certification, the voter should be modeled with the high-
est possible fidelity. Its structure should be traceable to the original design and
it should conform as closely as possible to code generated from the design. It
should include a minimal number of abstractions. On the other hand, the level
of abstraction used in the environment must be carefully optimized. We must
ensure that the environment will exercise all possible behaviors of the voter
(including fault conditions) without introducing any unrealistic behaviors.

signal
Pinput
valid| signall
Sensor1 —I—’ valid1 outputSignal —>
signal Psignal2
data P]input
valid valid|
World Sensor2 J—p signala outputValid—>
signal 4|—’ valid3
i t
—|ineu valid sensorVoter

Sensor3

Fig. 4. SMV modules for the voter and environment.

4.2 Assumptions and simplifications

The following assumptions and simplifications have been made in modeling the
sensor voter.

No Simultaneous Sensor Failures The algorithm assumes that two sensors
cannot fail at the same time. In particular, the first sensor failure must be de-
tected and isolated by the voter before it is able to respond to a second failure.
This fault hypothesis is reasonable if sensor failures are independent so that the
probability of simultaneous failures is sufficiently low.

We note that under this assumption the number of valid sensors plus the
number of sensors declared faulty is more or less constant. That is, when a
sensor becomes faulty this sum will temporarily increase by one (the number
faulty increments) and when the fault is detected it will decrease by one (the
number valid decrements).

This assumption was handled in the SMV model by using the INVAR dec-
laration. The INVAR declaration specifies an invariant that every state in the
transition system must satisfy, thus restricting the transition relation to only
those states. The invariant used in our model is that the number of valid sensors
plus the number of faulty sensors cannot be less than three nor greater than
four.

The number of faulty sensors (numFaulty) is computed within the environ-
ment as sensors become faulty. However, the number of valid sensors (numValid)
is computed within the voter and its correctness must be verified independently.

Ags we will see in the Analysis section, it turns out that the single fault
hypothesis is not entirely valid when there are only two remaining sensors. An
indefinitely long time period can elapse between the detection of a fault by
miscomparing sensors and a subsequent isolation of the fault based on a hardware
invalid flag.

Time model The SMV model does not explicitly model time. Each execution
step in the model corresponds to one sample in the Simulink design, independent
of the actual sample rate. The only place where time enters into the model is
a gain constant used in the “Time Magnitude” module. This constant serves to
convert the number of time steps that a sensor miscompare persists into a time
for comparison with the persistenceThreshold time. We have let this value be
1 and adjusted the persistenceThreshold accordingly so that all values will be
integers.

Sensor Signals The sensor signals used in the voter design are floating point
numbers in the range from -20 .. 20. The sensor signals in our initial SMV model
are restricted to be integers. We have also limited the range to reduce the state
space of the model during implementation and debugging.

10

4.3 Translation of Simulink to SMV

The SMV model contains three main modules: realWorld(), sensor(), and vot-
ing3Signals().

Module realWorld() This module takes no arguments and non-deterministically
generates integer values in a fixed range {a..b}, currently {1, 2, 3}. We have
selected comparison threshold parameters in the model so that this range is suf-
ficient to trigger the fault detection functions in the voter. We have evaluated
larger ranges of input values but with significant increase in verification time
and no impact on the verification results.

Module sensor(world) This module takes the output of realWorld() for an
argument and contains three internal variables, signal, valid, and fault. The
variable fault is initialized to zero and thereafter is assigned nondeterministically
any value between zero and two. A fault value of one means that the sensor’s
signal is faulty, at which point the sensor broadcasts an arbitrary value as signal.
A fault value of two means that the hardware flag for the sensor became invalid,
at which point the hardware flag takes an arbitrary value. OQur model requires
that once a sensor is faulty, whether in its signal or hardware flag, then it remains
faulty. A non-faulty sensor passes the signal received from the world as well as a
hardware flag of true. We do not currently permit a simultaneous hardware and
signal failure.

Module voting3Signals() This module takes four arguments as input: an
array of signals of all three sensors, array of hardware flags for all three sensors,
and two constants defining fault thresholds. This module has several variables,
most of which are instances of other modules. The variables’ names preserve the
name of the logic blocks in the Simulink Diagram, Figure 1.

5 Analysis

The requirements for the sensor voter have been translated to computation tree
logic (CTL) specifications and analyzed using SMV. CTL is a temporal logic
having connectives that refer to the future [7]. An initial set of specifications
derived mostly from the fault handling requirements are discussed in this section,
along with the analysis results. These specifications have been derived from the
fault handling state machine in Figure 2 and specify what conditions can and
cannot occur at any time. We also consider some specifications dealing with the
validity of the computed output. Note that the variable names in the detailed
specifications match the variable names in the Simulink diagram in Figure 1.

5.1 Fault handling

We need to verify that faulty sensor detection and elimination is final. The
following SMV SPECS verify this desired property.

11

Three valid sensors Given three valid sensors, once a sensor is detected and
isolated based either on a hardware fault or persistent miscompare then this
isolation is final.

SPEC
AG(sensorVoter.numValid = 2 — — EFsensorVoter.numValid = 3)

This SPEC is true. It states that it is globally true that if the number of
valid sensors is two then there is no execution path in which that number may
become three again, i.e. once a sensor is eliminated, then it stays eliminated.

Two valid sensors A similar SPEC portrays that the same argument holds
when only two sensors are valid.

SPEC
AG(sensorVoter.numValid = 1 — — EFsensorVoter.numValid > 2)

This SPEC is true and states that it is globally true that there is no execution
path where the number of valid sensors changes from one to two or more valid
Sensors.

One valid sensor Given only one valid sensor, we need to verify that should
this sensor fail then it cannot recover.

SPEC
AG(sensorVoter.numValid = 0 — — EF sensorVoter.numValid > 1)

This specification is true and states that it is globally true that there is no
execution path where the number of valid sensors changes from zero to a number
larger than zero. The above set of specifications for the fault handling behavior
of the voter was verified to be true using SMV. However, all the specifications
described so far do not take into consideration the specific error conditions that
trigger the particular fault states. A general specification pattern that would
cover each of the state transitions in Figure 2 could be of the form:

SPEC
AG((state; A errorCondition) — AF(state;))

That is, in state; the occurrence of errorCondition must eventually lead to
state;. For example, when there are three valid sensors the occurrence of an
invalid sensor flag must cause the voter to eliminate the sensor and go to the
two valid sensors state.

Let V = (8,4, F) be the sensor voter model, where S is the set of states
the sensor voter can be in as shown in the fault-handling FSM in Figure 2, ¢ is
a transition relation, and F = {fo, f1, f2, fs, f4, f5} is the set of possible error
conditions. fy is no sensor failure, f; is the first sensor failure, f is the second
sensor failure, fs is three sensor failures, f4 is two miscomparing sensors that
return to agreement, and f5 is a subsequent sensor failure after two remaining
sensors miscompare. The transition relation 6 : § x F — S follows Figure 2.

12

To be more specific, we would like to able to show that

. AG((so A f1) = AF s1),where sp,51 € S ,and f; € F

. AG((s1 A fa) = AF (s2V s3)),where 51,50 € S jand fo € F
. AG((s2 A fa) — EF s1),where 59,51 € S ;and fL € F

. AG((s2 A f5) = EF s3),where 59,53 € S ;and f5 € F

. AG((s3 A fs) = AF s4),where 53,84 € S ;and fz € F

We tested AG((so A f1) — AF s1), where sg,s1 € S ,and f; € F as follows:

U o N =

SPEC

AG((sensorVoter.numValid = 3A sensorVoter.outputValid Af;) —
AF (sensorVoter.numValid = 2 A sensorVoter.outputValid)) where
fi=(sensorl.fault # O A sensor2.fault = 0 A sensor3.fault =0) V
(sensorl.fault=0 A sensor2.fault # O A sensor3.fault=0) V
(sensorl.fault=0 A sensor2.fault=0 A sensor3.fault # 0).

The choices we made in modeling the environment driving the voter allow
this specification to be violated, and a counterexample was identified by SMV.
In particular, it was possible in the model for a faulty sensor to never exhibit
any observable faulty behavior. After we modified the sensor model to eliminate
this possibility, the above SPEC was proved.

Similarly we tested the specification AG((s1 A fo) = AF (s2 V s3)),where
81, 82,83 €S ,and fo € F as follows:

SPEC

AG((sensorVoter.numValid = 2A sensorVoter.outputValid Af; —
AF((sensorVoter.outputValid A numValid = 1)
V(!sensorVoter.outputValid A numValid = 2)) where
fo=(sensorl.fault # O A sensor2.fault # 0 A sensor3.fault =0) V
(sensorl.fault=0 A sensor2.fault # 0 A sensor3.fault # 0) V
(sensorl.fault # 0 A sensor2.fault=0 A sensor3.fault # 0).

This specification addresses two situations, the first being when the second
sensor failure results in a hardware invalid flag (s is reached), and the other
being when the second sensor deviates in signal (so is reached). Testing AG((
s1 A fo) = AF (s3)) yields false; the counterexample, as expected, corresponds
t0 0(s1, fo) = s2. The state s is quite interesting because it handles the situation
in which two sensors miscompare and both sensors have valid hardware flags.
In our voter design the number of valid sensors changes from two to one only
if one of the two remaining valid sensors has a hardware invalid flag. If, on the
other hand, the two valid sensors deviate in signal, then their output is declared
invalid, but the two sensors remain in service. These two sensors may agree at a
later point in time or the faulty sensor may identify itself via the hardware valid
flag and be isolated by the voter.

The specification AG((s2 A f4) — EF s1) investigates if it is possible for two
miscomparing sensors with invalid output to agree in signal and produce valid
output. We were able to verify that this specification is correct; the detailed

13

SPEC is below:

SPEC

AG((sensorVoter.numValid = 2 A— sensorVoter.outputValid) —

EF (sensorVoter.numValid = 2 A sensorVoter.outputValid))

The choice of AG((se A f4) = EF s1) and not AG((se A f1) = AF s;) is because
we want to verify that s; is reachable from sg in certain execution paths and
not all execution paths.

We use the specification AG((s2 A f5)— EF s3) to investigate whether sg is
reachable from s in certain, not all, execution paths. However, an interesting
result shows up while testing AG((s2Af5) — EF s3) because our second invariant
does not allow us to transition from sg to s3.

The following specification produces a counterexample.

SPEC
AG((sensorVoter.numValid = 2 A— sensorVoter.outputValid) —
EF (sensorVoter.numValid = 1 A sensorVoter.outputValid))

The error produced is the following: Sensorl becomes faulty, miscompares
with sensors 2 and 3 and is eliminated. Sensor2 then becomes faulty and mis-
compares with sensor3 causing outputValid to become false. At this point, num-
Valid + numFaulty = 4. To transition from the current state, we need one of the
sensors to produce a hardware invalid flag. However, this is not permitted by our
INVAR assumption because the sensor2 fault has not yet been isolated. Further
refinements are required to accurately capture the desired fault hypothesis.

5.2 Computation of output

Our work so far has concentrated on verification of the fault-handling require-
ments of the voter. We are currently working on verification of the requirements
for the voter output signal. The following discussion covers some of the relevant
specifications that we are analyzing.

Output signal The algorithm is required to correctly compute the output sig-
nal. The specification below attempts, though weakly, to capture the correctness
of this requirement.

SPEC
AG(sensorVoter.outputSignal.out # world.out —
AF (A[sensorVoter.outputSignal.out # world.out U
(sensorVoter.outputSignal.out = world.out A sensorVoter.outputValid)]
V (sensorVoter.outputSignal.out # world.out)))

This specification states that when the output signal of the sensors is different
than the environment’s signal, then either the sensors will eventually stabilize
by voting the faulty sensor or it may be the case that the output will never
stabilize.

14

Output signal bounds It should always be the case that when the voter
outputValid is true, then the voter outputSignal should be within a set error
tolerance of the true world value. This tolerance will be a function of the noise
introduced by the sensor model and any fault conditions introduced. With no
noise and no faults they should agree exactly. The desired specification will be
of the form:

SPEC
AG(sensorVoter.outputValid —
| world.data - sensorVoter.outputSignal | < errorThresh)

Output transient bounds The requirements bounding the difference between
the voter output and the true signal during a transient are based on establishing
a time window around the transient.

The first and second transients should satisfy the following specifications:

SPEC --first transient
AG(sensorVoter.numValid = 3 — transient.timer < 3) was verified to be
true.

SPEC --second transient
AG(sensorVoter.numValid = 2 — transient.timer < 10)

This second specification resulted in a counterexample because the number
of valid sensors is two in states s; and sq and it is possible to stay indefinitely
in state so. Recall that ss is the state of invalid output because one of the two
valid sensors has deviated in signal and thus the output signal of the voter is
different from the true signal of the world.

5.3 Performance

The fault handling specifications typically required 20 Mbytes of memory and ap-
proximately 1000 seconds to verify. Detecting the counterexample to the second
output transient specification took approximately 14000 seconds and required
30 Mbytes of memory.

6 Conclusion

Our future plans in this study include the following work:

1. Increasing the signal range and checking the specifications using a magnitude
threshold greater than 1. We will assess the relationship between the signal
range and the performance of the model checker (state space, analysis time).

2. Analysis of additional specifications of the voter behavior and refinement of
the environment model.

3.

4.

15

We are also researching automation of the translation process to generate an
SMYV model from a Simulink model. Wide spread and practical use of model
checking in this domain will require automation of this sort.

In addition, we plan to use other model checking tools to examine the cor-
rectness of the sensor voter algorithm.

References

1.

P. Kurzhals, et al, “Integrity in Electronic Flight Control Systems”, AGARDograph
No. 224, April 1977. (available through National Technical Information Service,
Springfield, VA)

T. Cunningham, et al, “Fault Tolerance Design and Redundancy Management
Techniques”, NATO AGARD Lecture Series No. 109. Sept 1980. (available through
National Technical Information Service, Springfield, VA) see especially Chapter 3:
Computer Based In-flight Monitoring; Chapter 7: Failure Management for Saab
Viggen JA-37 Aircraft; Chapter 8: Flight Experience with Flight Control Redun-
dancy Management

G. Belcher, D. McIver and K. Szalai, “Validation of Flight Critical Control Sys-
tems”, AGARD Advisory Report No. 274, Dec 1991. (available through National
Technical Information Service, Springfield, VA)

S. Osder, “Practical View of Redundancy Management Application and Theory”,
Journal of Guidance and Control, Vol. 22 No. 1 , Jan-Feb 1999.

R.P.G. Collinson, Introduction to Avionics, Chapman & Hall, London, 1998.

K. McMillan, Symbolic Model Checking , Kluwer Academic Publishers, Boston,
Dordrecht, London, 1993.

Micheal R A Huth and Mark D Ryan, Logic in Computer Science Modelling and
reasoning about systems, University Press, Cambridge, United Kingdom, 2000.

. SMV web page: http://www-2.cs.cmu.edu/ modelcheck

. sf2smv web page: http://www.ece.cmu.edu/ webk/sf2smv
10.
11.

Checkmate web page: http://www.ece.cmu.edu/ webk/checkmate
Simulink weg page: http://www.mathworks. com/products/simulink

