Formal verification of an avionics sensor voter
using SCADE *

Samar Dajani-Brown f, Darren Cofer f, and Amar Bouali {

tHoneywell Laboratories, Minneapolis, MN, U.S.A
iEsterel Technologies, Villeneuve-Loubet, France
samar.dajani-brown@honeywell.com

Abstract. Redundancy management is widely utilized in mission criti-
cal digital flight control systems. This study focuses on the use of SCADE
(Safety Critical Application Development Environment) and its formal
verification component, the Design Verifier, to assess the design correct-
ness of a sensor voter algorithm used for management of three redundant
sensors. The sensor voter algorithm is representative of embedded soft-
ware used in many aircraft today. The algorithm, captured as a Simulink
diagram, takes input from three sensors and computes an output signal
and a hardware flag indicating correctness of the output. This study
is part of an overall effort to compare several model checking tools to
the same problem. SCADE is used to analyze the voter’s correctness
in this part of the study. Since synthesis of a correct environment for
analysis of the voter’s normal and off-normal behavior is a key factor
when applying formal verification tools, this paper is focused on 1) the
different approaches used for modeling the voter’s environment and 2)
the strengths and shortcomings of such approaches when applied to the
problem under investigation.

1 Overview of Sensor Voter Problem

With the advent of digital flight control systems in the mid 1970s came the
capability to implement monitoring, redundancy management, and built-in-test
functions in software without the need for additional hardware components. The
sensors used in these flight control systems exhibit various kinds of determinis-
tic and non-deterministic errors and failure modes including bias offsets, scale
factor errors, and sensitivity to spurious input and environmental factors. Re-
dundant sensors are used to compensate for these errors and failures. Sensor
failure detection algorithms (“voters”) must detect and isolate a sensor whose
output departs by more than a specified amount from the normal error spread.
Publications such as [8] and [9] describe redundancy management schemes used
in flight control systems.

This paper builds on earlier work in [6] and is part of an overall effort to
compare several model checking tools when analyzing the correctness of avionics

* This work has been supported in part by NASA contract NAS1-00079.

components. We have used as a test case a typical voter algorithm with many
of the features taken from [8]. This class of algorithms is applicable to a variety
of sensors used in modern avionics, including rate gyros, linear accelerometers,
stick force sensors, surface position sensors, and air data sensors (e.g. static and
dynamic pressures and temperature).

Formal methods techniques, though embryonic to software development, have
been used in [6] and [7] to analyze or verify safety critical properties of avionic
software. We have found that the most challenging aspect of any formal verifi-
cation effort is the specification of the environment in which the verified system
operates. The environment captures all the assumptions about how the system
interacts with the rest of the world, including physical constraints, timing con-
siderations, and fault conditions. It should permit all interesting behavior of
the system, while prohibiting any unrealistic behaviors. Much of our work has
centered on creating good environment models for the sensor voter.

In this study, we use the SCADE, a tool suite for the development of real-time
embedded software and its formal verification component, the Design Verifier,
to analyze correctness of the voter’s algorithm.

1.1 Sensor Voter Algorithm

Simulink [13] is a computer aided design tool widely used in the aerospace
industry to design, simulate, and auto-code software for avionics equipment.
The voter’s algorithm was developed in Simulink. It incorporates the typical
attributes of a sensor management algorithm and is intended to illustrate the
characteristics of such algorithms. The voter takes inputs from three redundant
sensors and synthesizes a single reliable sensor output. Each of the redundant
sensors produces both a measured data value and self-check bit (validity flag)
indicating whether or not the sensor considers itself to be operational. Data flow
of the system is shown in Figure 1. A brief description of the voter’s design and
functionality follows:

signal

Y

input

valid signall

Sensorl validl outputSignal —>

signal ignal2

datal

LT

input

\ 4

valid alid2

World Sensor2 signal3 outputvalid——>

signal valid3

1]

] input

sensorVoter

valid

Sensor3

Fig. 1. Voter model and environment.

1. Sample digitized signals of each sensor measurement at a fixed rate appropri-
ate for the control loop, e.g. 20 Hz. A valid flag supplied by sensor hardware
indicating its status is also sampled at the same rate.

2. Use the valid flag and comparison of redundant sensor measurements to
detect and isolate failed sensors.

3. Output at a specified sample rate a signal value computed as a composite
average of the signals of non-faulty sensors. Also output, at the same specified
rate, the status of the composite output by setting a ValidOutput flag.

4. Tolerate “false alarms” due to noise, transients, and small differences in
sensor measurements. Sensors are not marked failed if they are operating
within acceptable tolerances and noise levels.

5. Maximize the availability of valid output by providing an output whenever
possible, even with two failed sensors.

6. The algorithm is not required to deal with simultaneous sensor failures since
this is a very low probability event.

A more detailed description appears in earlier work using the symbolic model
checker SMV [12] [10] to analyze correctness of the voter’s algorithm [6].

1.2 Sensor voter requirements
Behavioral requirements for the sensor voter fall into two categories:

1. Computational, relating to the value of the output signal computed by the
voter.

2. Fault handling, relating to the mechanisms for detecting and isolating
sensor failures. The required fault handling behavior of the voter is shown
in Figure 2.

Each of these categories includes requirements for reliability (correctness under
normal operation) and robustness (rejection of false alarms).

Computational requirements

The main purpose of the sensor voter is to synthesize a reliable output that
agrees with the “true” value of the environmental data measured by the redun-
dant sensors. Therefore under normal operation, the output signal should agree
with this true value within some small error threshold. In the absence of sensor
noise or failures the two values should agree exactly. During the interval between
the failure of a sensor and the detection of the failure by the voter, it is expected
that the output value will deviate from the true value due to the continued in-
clusion of the failed sensor in the output average. During this reconfiguration
interval the transient error in the output signal must remain within specified
bounds, regardless of the type or magnitude of the failure.

Fault handling requirements
The required fault handling behavior for the voter is shown in Figure 2. Initially,
all three sensors are assumed to be valid. One of these sensors may be eliminated

due to either a false hardware valid signal from the sensor or a miscomparing
sensor value, leading to the “2 valid” state. If one of the two remaining sensors
sets its hardware valid signal false, it is eliminated leading to the “1 valid” state.
If this sensor subsequently sets its valid flag false it is eliminated and the voter
output is set to not valid. A special situation occurs when there are two valid

Valid sensor goes 1 valid sensor goes
(hardware) invalid (hardware) invalid

Sy S S,
0 valid sensors 1 valid sensor 2 valid sensors
Output not valid Output valid Miscompare,
Output not valid

1 valid sensor goes
(hardware) invalid

Valid sensors have
persistent mi X
(Both are still valid)

Persistent

1 valid sensor goes

I
(hardware) invalid clears

S, S,
3 valid sensors 2 valid sensors
Output valid No miscompare,

Output valid

Two pairs of valid sensors
have persistent miscompare.
Eliminate common sensor.

Fig. 2. Fault states of the sensor voter.

sensors. If these sensors miscompare, the voter cannot determine which may be
faulty. Although there are other possibilities, this voter algorithm continues to
keep both sensors in service but it sets its output valid flag false. If the sensors
subsequently agree in value, the voter returns to the “2 valid, no miscompare”
state and sets its output valid flag to true. Alternatively, if one of the two sensors
identifies itself as faulty (via the hardware valid flag) it can be isolated by the
voter and the other sensor signal used as the correct output value.

Each of these categories includes requirements for reliability (correctness un-
der normal operation) and robustness (rejection of false alarms).

2 Overview of SCADE

SCADE (Safety Critical Application Development Environment) ! is a tool suite
for the development of real-time embedded software. It provides a programming
language called SCADE, a simulation environment, automatic code generation,
and formal verification.

! SCADE is distributed by Esterel Technologies (www.esterel-technologies.com)

2.1 The SCADE design language

SCADE is a graphical deterministic, declarative, and structured data-flow pro-
gramming language based on the Lustre language [1,2]. SCADE has a syn-
chronous semantics on a cycle-based and reactive computational model. The
node is the basic operator or design block of the language and can be either
graphical or textual. A control system is modeled in SCADE via nodes con-
nected to one another in a manner similar to how control systems get modeled
in Simulink. Some of the advantages of SCADE are that while developing the
model, the simulator component can be used to check for syntax and semantic
correctness of the nodes. SCADE is a strongly typed language with predefined
and user defined types. The language allows for arithmetic operations on real and
integer values, logical operation on Boolean variables, control flow operations (if
then else, case) and temporal operators to access values from the past.

Figure 3 shows a graphical SCADE node programming a simple counter of the
occurrence of an event. The occurrence of an event is given as a Boolean input
flow called Event. The counter produces an output integer flow called Count.
The Lustre textual data-flow equations counter-part of the graphical node are
listed in the figure as well. The fby operator is a memory element, whose output

I— node CountEvent (Event: bool) returns (Count: int)
Event var
1 L1: int; L2: int;

., let equa eq_CountEvent [,]
11 = if Event then (1 + _L2) else (L2)
12 = fby(Ll1 , 1, 0)
Count = _L2

tel

Count

Fig. 3. A simple SCADE node

is equal to its input value after a fixed number of cycles. For instance, L2 =
fby(.L1 , 1 , 0) means L2 is equal to _L1 after 1 cycle. At the initial cycle,
L2 is equal to 0. The rest of the node behavior is straightforward.

2.2 Formal verification in SCADE

Design Verifier (DV) is the formal verification module of SCADEZ. DV is a
model checker of safety properties. Safety properties are expressed using the
SCADE language. There is no specific syntax framework as in SMV to express
liveness properties in the form of CTL logic [11]. A SCADE node implementing
a property is called an observer [3]. An observer receives as inputs the variables
involved in the property and produces an output that should be always true.
Figure 4 shows how a new model is built connecting the model to verify to
the observer property. DV is used to check if the property observer’s output

2 DV is based on Prover Technology proof engines (www.prover.com)

is always true. If it is, the property is said to be Valid, otherwise it is said
to be Falsifiable, in which case DV generates a counter-example that can be
played back in the SCADE simulator for debugging purposes. DV is able to

[l

Fig. 4. Verification by means of observers

verify properties mixing Boolean control logic, data-value transformations, and
temporal behavior. DV core algorithms are based on Stalmarck’s SAT-solving
algorithm for dealing with Boolean formulae, surrounded by induction schemes
to deal with temporal behavior and state space search [4]. These algorithms are
coupled with constraint solving and decision procedures to deal with the data-
path. SAT-based model-checking has shown interesting performances compared
to BDD-based model-checking [5], in particular for many real-world applications
with enormous formulas that could not be handled by current BDD packages [4].

DV, similar to SMV, allows for restriction of the state space while verifying
a property through a notion of assertions. A SCADE assertion on an input or
output variable is similar to an SMV invariant and prunes the search space to
only those instances where the assertion holds true. Therefore, in using SCADE
and the DV, our work let us use and compare DV and SMV as applied to the
same problem.

3 Modeling And Analysis Using SCADE

The overall SCADE model of the system under consideration, as shown in Fig-
ure 5, consists of the voter model and the environment model. The voter’s model
corresponds to the “real” system that we wish to analyze. It is composed of a hi-
erarchal representation of graphical and textual SCADE nodes. The environment
model consists of three sensor models and a world model and is intended to be
a realistic description of the environment driving the voter’s functionality. The
distinction between the system under study (voter model) and its environment
(the sensors and world models) is an important one. The voter’s model should
be modeled with the highest possible fidelity, its structure should be traceable
to the original design and it should conform as closely as possible to code gener-
ated from the design. The level of abstraction used in modeling the environment
should be carefully optimized; for we must ensure that the environment will ex-
ercise all possible behaviors of the voter (including faulty conditions) without
introducing any unrealistic behavior [6].

The design of a realistic environment is crucial when verifying “real” system
properties using model checking techniques. We can consider the environment as

™,
num Faufty .
A
=1faulty ™,
—>— >
=1fault s2faulty A
I
|_>_ s3faulty
word Signal
Envvironment .
—— — >
=2iauk ot putalid
",
—— >
=3fault raw Error
ater 7\/\
peers BTor
magThresh >
num'salid
"
persThrash / i
autput Data

Fig. 5. Top Level SCADE Model of Voter and Environment System

the outside world that interacts with the system under study and the systems’
requirements as collections of statements about the outside world that we want
the system to help make true. The design of a good environment must model the
outside world requirements accurately without introducing erroneous behavior.
The environment model must capture all general, including faulty, expected
behavior of the outside world that interfaces with the system to be verified.

Design of good environment models is gaining recognition as an important re-
search problem. For example, in [17], automatically generated environment mod-
els are used to verify the source code of the Windows kernel. The environment
to be modeled is the application programming interface (API). The environment
model is generated via a “training” process by taking several programs that use
a common API and applying model checking to create abstractions of the API
procedures. These abstractions are then reused on subsequent verification runs
to model-check different programs utilizing the same API.

In our study, we use knowledge gained from counter examples generated from
using an environment model to modify/refine newer environment models that
accurately capture the requirements. We expect our system to handle a range
of sensor signals some of which are faulty signals but we must not have more
than one sensor exhibiting faulty behavior at any given time; it is true about
the outside world that no two sensors can become faulty simultaneously as the
probability of such an event is very close to zero. As discussed in later sections,
we capture this property in two different ways through different environment
models. The environment models are developed manually and results of three
such models are reported in later sections.

Our SCADE model of the voter was developed based on the voter’s origi-
nal Simulink design. SCADE provides a gateway for automatic translation of
Simulink models, but we have not evaluated this capability in our current study.

The sections below list the three approaches used to model the voter’s en-
vironment. Whenever possible, we compare our modeling approach in SCADE

versus our earlier work using SMV. Results to follow were computed using a
Pentium III PC with 512 MBytes of RAM running Windows 2000.

3.1 Modeling Assumptions and Simplifications

The following assumptions and simplifications have been made in modeling the
sensor voter using different environments.

Fault Injection

A Boolean flag is read from the outside world by the sensor model; such a flag
injects non-deterministic faulty behavior in the sensor. The sensor model is de-
signed such that when this flag is set then the sensor is faulty in both hardware
and signal. To test correctness of the voter’s fault handling and computational
requirements when signal or hardware faults occur, we use different values for
the persistence value constant; by the voter’s design, this constant is the number
of cycles that a sensor is allowed to differ in signal prior to being eliminated by
the voter. We define a “signal fault” as the fault detected by the voter when a
sensor differs in signal from the good expected signal value. To test for a signal
fault, we set persistent threshold equal to two. This assumption guarantees that
signal failure must be detected and isolated by the voter in two cycles; i.e. in one
cycle after the cycle where the fault occurs. We also define a sensor’s “hardware
fault” as the fault detected by the voter due to hardware failure in the sensor; by
the voter’s design, the hardware fault should be detected and the faulty sensor
should be isolated in three cycles. To test for a hardware fault, we set persistent
threshold equal to four. Thus the isolation and detection of hardware fault which
requires three cycles to complete; i.e. in two cycles after the cycle where the fault
occurs, will occur prior to the detection and isolation of the signal fault which
in this case requires four cycles to complete.

Time model

The SCADE models do not explicitly model time. Each execution step in the
model corresponds to one sample in the Simulink design, independent of the
actual sample rate. The only place where time enters into the original Simulink
model is a Gain block which multiplies its input by a constant (gain).This gain
constant was adjusted so that the model is independent of time. A detailed justi-
fication for modeling the voter’s algorithm independent of time is described in [6].

No Simultaneous Sensor Failures

The algorithm assumes that two sensors cannot fail at the same time. In partic-
ular, the first sensor failure must be detected and isolated by the voter before
it is able to respond to a second failure. This fault hypothesis is reasonable if
sensor failures are independent so that the probability of simultaneous failures
is sufficiently low.

We approached this single fault hypothesis in two ways: 1) In the first envi-
ronment model, referred to in later sections as “Environment Model I”, we used
a similar approach to our earlier work in SMV. Given that it is the case the
number of valid sensors plus the number of sensors declared faulty is bounded
between three and four inclusive, we used a SCADE assertion to satisfy this
bound.

Note that the number of faulty sensors (numFaulty) is computed within the
environment as sensors become faulty but the number of valid sensors (num-
Valid) is computed within the voter and its correctness must be verified indepen-
dently. With this in mind, we developed different environment models, referred
to as “Environment Model II” and “Environment Modell II1” | that handled the
single fault hypothesis by asserting that the number of faulty sensors (a value
computed within the environment) is always less than or equal to one.

Noise Free Signals

The models developed did not deal with signal noise. In all of our analysis, we
assume that any deviation in the sensor signals is a fault. Our verification work
focused on the voter’s ability to identify and isolate faulty sensors, rather than
on robustness requirements.

4 Analysis

We will use the following notation to express our properties throughout this
section, where HF and SF mean Hardware Failure and Signal failure respectively.

p" tick q True iff ¢ is true i cycles after the cycle where p is true.

VS The number of valid sensors.

Fy1,Fpa,Fps True if there is a HF of one, two, and three sensors respectively.
Fg1,Fy True if there is a SF of one and two sensors respectively.

4.1 Fault Handling Requirements Properties

The properties extracted from the fault handling requirements of Figure 2 that
we want to formally verify can be grouped by the number of sensor failures.

One Sensor Failure Here are the properties when one sensor is detected as
faulty.

— Hardware fault: }
(VS = 3 A ValidOutput A Fpq) 2 1k (VS = 2 A ValidOutput)
This property means that if the number of valid sensors is 3, and the Voter’s
output is valid, and there is one hardware faulty sensor, then after 2 cycles
the number of valid sensors becomes 2 and the Voter’s output is valid.
— Signal fault:
1 tick

(V.S = 3 A ValidOutput A Fsy) =" (V.S = 2 A ValidOutput)

10

This property means that if the number of valid sensors is 3, and the Voter’s
output is valid, and there is one software faulty sensor, then after 1 cycle the
number of valid sensors becomes 2 and the Voter’s output is valid.

Two Sensor Failures Here are the same properties when a second sensor is
detected as faulty.

— Hardware fault:)
(V.S = 2 A ValidOutput A Fyo) 2 1k (VS =1 A ValidOutput).

— Signal fault:
(V'S = 2 A ValidOutput A Fy) * 5" (V.S = 2 A = ValidOutput).
This property means that if 2 valid sensors miscompare in signal, then after
1 cycle the output of the voter is declared invalid. Both sensors remain valid
since the voter algorithm is not designed to determine the faulty sensor for
this case. However, the faulty sensor will exhibit a faulty behavior in the
following cycle and will get eliminated by the voter. This last special case is
discussed in more detail in a later section.

Three sensor failures Here are the same properties when a third sensor is
detected as faulty.

— Hardware fault:)
(VS = 1 A ValidOutput A Fys3) 2 1k (VS =0 A = ValidOutput).

— Signal fault:
If there is only one valid sensor in the system, then the voter can only
eliminate this sensor based on a hardware fault, i.e. we cannot test for a
signal fault since there is no other valid sensor to compare to.

Sensor elimination Property When a sensor is eliminated by the Voter it
will never be considered in any future computation. We express it as: ((V.S =
k) = =(VS > k)),k € [0,2]. This property means that if the number of valid
sensors becomes k then this value will never become a value greater than k.

4.2 Environment Model 1

Sensor Model

The sensor model captured as a SCADE graphical node takes as input a non-
deterministic Boolean flag from the environment. A signal of one and a hardware
valid flag is produced by the sensor if the Boolean flag is false (i.e. sensor not
faulty); a signal of five and a hardware invalid flag is broadcasted when the
Boolean input flag is true. In addition, logic combination of a single cycle delay
and an or-gate are used so that once a sensor becomes faulty (i.e. Boolean input
flag is true) it stays faulty and does not recover. This last quantity is also sent
as output from the sensor and is used in calculating the numFaulty value. The
assumption that a faulty sensor does not recover differs from our sensor model

11

in SMV where we allowed a faulty sensor to recover its faulty behavior. Further-
more, we use only two input signal values {1,5} to indicate the faulty /non-faulty
behavior of a sensor which is different than our analysis in SMV where we used
a signal range of {1,2,3}. Assuming two input signal values is justifiable since in
our analysis of the voter algorithm we only care about the difference between
two signals.

Environment Node

This SCADE node is composed of three sensor nodes, a multiplexer node that
groups and outputs the hardware valid flags of the sensors into an array of
three Boolean values, a multiplexer that groups and outputs the signals broad-
cast by the three sensors into an array of three integers and a numFaulty node.
The numFaulty node sums the Boolean flags sent by each sensor indicating its
faulty /non-faulty status and outputs that sum as numFaulty. We restrict the
sum of faulty and valid sensors to be bounded between three and four inclusive.
This restriction guarantees our single fault hypothesis because it allows one sen-
sor to become faulty and a second sensor cannot become faulty until the first
faulty sensor is detected and eliminated by the voter.

Verification of fault handling requirements

Table 1 summarizes the results we obtain when checking the properties. The
first column recalls the name of the property. The second column gives the CPU
time in seconds spent by DV to check the property. The third column gives the
result of verification, which is either Valid to mean that the property holds, or
Falsifiable in the opposite case, and some additional comments when necessary.
Recall that in our sensor model, hardware and signal faults occur simultaneously,
therefore, we expect that the signal fault is detected by the voter in a number
of cycles equal to the persistence threshold value (i.e. two) where the hardware
fault should be detected in three cycles. Therefore, by setting persistence thresh-
old equal to two, not only can we check that a second faulty sensor with a signal
fault leads to a state where the voter’s output is declared invalid and the num-
ber of valid sensors is still equal to two; for we can also check whether this same
sensor demonstrates a hardware failure in three cycles; i.e. in one cycle after it
reached the state of 2 valid sensors and invalid input, the voter should be in the

state of one valid sensor and valid output. We were able to verify that
1 tick

(VS =2 A= ValidOutput) - =" (V.S = 1 A ValidOutput).

Drawbacks to Environment Model I

1. One drawback to this sensor model is that a failed sensor remains faulty
and continues to produce an invalid hardware flag and a bad signal. This
means that we cannot test the voter’s ability to transition from the state
where the number of valid sensors is two and output is not valid to the state
where the number of valid sensors is two and the output is valid as shown in
Figure 2. A different sensor model is required to investigate this capability
of the voter.

12

Table 1. Verification Results

| | Property

| Time(secs) |

Result

One sensor failure

Hardware fault

134

Valid: a faulty sensor on a hardware fault
is detected by the voter

Signal fault

3

Valid

Sensor elimination is final

0.13

Valid with persistent threshold = 2 (soft-
ware fault)

Sensor elimination is final

0.14

Valid with persistent threshold = 4 (hard-
ware fault)

Two sen

sor failures

Hardware fault

137

Valid: a second faulty sensor on a hard-
ware fault is detected by the voter

Signal fault 81| Valid

Sensor elimination is final 011 Valid with persistent threshold = 2 (soft-
ware fault)

Sensor elimination is final 0.13 Valid with persistent threshold = 4 (hard-

ware fault)

Three sensor failures

137 Valid: a second faulty sensor on a hard-
ware fault is detected by the voter
Not relevant, see section 4.1

Valid

Hardware fault

Signal fault
Sensor elimination is final

0.14

2. The assertion that the number of valid sensors plus the number of faulty
sensors is between three and four inclusive, coupled with the sensor design
used allows the second faulty sensor on a software fault to manifest its fault
as a hardware fault, thus transitioning to the state of 1 valid sensor and valid
output. This design eliminates the possibility that the third healthy sensor
manifests a faulty hardware behavior before the second fault is detected by
the voter.

4.3 Environment model 11

Environment Node

This SCADE node differs from the environment in the previous model in that
the numFaulty node sums the Boolean flag read by each sensor from the outside
world indicating its faulty /non-faulty status and outputs that sum as numFaulty
as opposed to summing up the Boolean flag sent by each sensor indicating its
faulty /non-faulty status. Such change is necessary in order to use the assertion
that the number of faulty sensors is less than or equal to one (i.e. numFaulty
<=1). This assertion does not make use of the variable numValid which is com-
puted by the voter. The assertion guarantees the single fault hypothesis since it
allows only one sensor to be faulty at any given time. The results obtained from
this environment model are described below.

13

Verification of fault handling requirements

Table 2 summarizes the results we obtain when checking the properties. For one
sensor failure the verification attempt resulted in a counter-example where sen-
sorl is faulty for one cycle (i.e. signal = 5), sensor3 is faulty for the next cycle
(i.e. signal = 5) so sensorl being faulty agrees with sensor3 being faulty in the
next cycle instead of being eliminated. Using the assertion that the number of
valid and faulty sensors is between three and four inclusive prevented a situation
where the second sensor becomes faulty before the first faulty sensor is elimi-
nated by the voter. However, the assertion made use of numValid which is an
output of the voter itself. When we avoid using numValid, and instead use the
numFaulty <= 1 assertion, we permit more random behavior of the system and
receive the counter example above. The problem is that we have not allowed
enough time between faults for the voter to eliminate the sensor. For two sensor

Table 2. Verification Results

|| Property | Time(secs) | Result |

One sensor failure

Valid: a faulty sensor on a hardware fault
is detected by the voter

Signal fault Falsifiable

Two sensor failures

Valid: a second faulty sensor on a hard-
ware fault is detected by the voter

Signal fault Falsifiable

Hardware fault 88

Hardware fault 116

failures the verification resulted in a counter-example where sensorl is faulty for
two cycles and is eliminated by the voter, after which sensor3 is faulty for one
cycle (i.e. signal equals 5), then sensor2 is faulty for the next immediate cycle
(signal = 5 also). Therefore, sensor3 and sensor2, though faulty, agree on signal
and we do not get to the state where the number of valid sensors is 2 but the
output is not valid. The fact that we are not allowing enough time between faults
causes this behavior to occur. This problem is addressed in Environment model
I1T described below.

4.4 Environment Model 111

Modifications to Sensor Model

Similar to the previous section, this environment model uses the assertion that
numFaulty <= 1 and also assumes that a time delay that exceeds the thresh-
olds for detecting a hardware or signal fault exists between sensor faults. The
sensor model, Figure 6, is modified such that the fault Boolean flag for faulty
sensor remains true for five cycles after which it is set to false thus allowing a
second sensor to fail under the assumption that numFaulty <= 1 . Recall that

14

a hardware fault must be detected in three cycles and we are using a persistent
threshold of two and four for the detection of signal failure, thus the five cycle
delay is justified. The sensor model is further modified to receive a signal range
between one and five from the outside world; a non-faulty sensor broadcasts the
signal received whereas a faulty sensor broadcasts the signal received plus one.
Hence a faulty sensor always exhibits faulty behavior in signal. This assumption
is valid because we are interested in the voter behavior when the sensors differ
in signal. In all the analysis below we use an assertion that numFaulty <=1

e

hwvalid

CountFCycles

sumFaulty

FBY
faulty 1 fase : :

sFaulty

>

signal

goodSignalRange

Fig. 6. SCADE Model of Sensor used in Environment III

and that the sensor signal range is between one and five inclusive.

Verification of fault handling requirements

Table 3 summarizes the results we obtain when checking the fault-handling prop-
erties. Table 1 and Table 3 are verification results for the same properties with
the exception that the single fault hypothesis used in table 3 is independent of
any values computed by the voter.

Property for the Output Signal Value It is expected that there will be
a transient condition in which the voter output data may differ from the signal
received from the world when a sensor becomes faulty. However, after a certain
threshold, the voter output data must agree with the signal received from the
world. Using a delay of 2 cycles, a persistent threshold of 4, and asserting that
numValid is greater than 0, we verified that:

(worldSignal # voterdata) 2 1k (worldSignal = voterdata)

The verification completed in 10.4 seconds and produced a valid result.

15

Table 3. Verification Results

|| Property | Time(secs) | Result |

One sensor failure
Valid: a faulty sensor on a hardware fault

Hardware fault 204 is detected b;j the voter
Signal fault 101.6|Valid
Valid with persistent threshold = 2 (soft-
ware fault)
Valid with persistent threshold = 4 (hard-
ware fault)

Sensor elimination is final 0.31

Sensor elimination is final 0.23

Two sensor failures

Valid: a second faulty sensor on a hard-
Hardware fault 225 ware fault is detected by the voter
Signal fault 122.67|Valid
Valid with persistent threshold = 2 (soft-
ware fault)
Valid with persistent threshold = 4 (hard-
ware fault)

Sensor elimination is final 0.19

Sensor elimination is final 0.22

Three sensor failures
Valid: a second faulty sensor on a hard-

Hardware fault 0.22 ware fault is detected by the voter
Signal fault Not relevant (see section 4.1)
Sensor elimination is final 0.23|Valid

5 Conclusion

In this paper we have used the formal verification capabilities of the SCADE
Design Verifier to analyze an embedded avionics software design. Model checking
is used to verify the correctness of the design with respect to its high-level fault-
handling requirements.

The main contribution of this work is to demonstrate the significance of the
environment model in verifying the design requirements of an algorithm. The
process of capturing a system’s design requirements for algorithm development
and subsequent software implementation is never an easy task. The design of a
suitable environment model is centered around developing a model that drives
the system to be implemented and tests the captured design requirements of the
system. Our work shows that capturing and developing the correct environment
model is a key issue and can be as hard as verifying correctness of the system
itself.

Acknowledgment

We extend our gratitude to Gary Hartmann and Steve Pratt at Honeywell Labo-
ratories for designing the voter algorithm and providing insight on its behavioral
properties and functional requirements.

16

References

1.

11.

12.
13.
14.
15.
16.

17.

P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, P. Niebert, “From
Simulink to SCADE/Lustre to TTA: a layered approach for distributed embed-
ded applications”, Proc. of the 2003 ACM SIGPLAN conference on Language,
compiler, and tool for embedded systems, San Diego, USA.

. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The Synchronous Data Flow

Programming Language Lustre”, Proceeding of the IEEE, September, 1991.

N. Halbwachs, F. Lagnier, and P. Raymond, “Synchronous observers and the ver-
ification of reactive systems”, Third Int. Conf. on Algebraic Methodology and
Software Technology”, AMAST’93, Workshop in Computing, Springer-Verlag.

. M. Sheeran and G. Stalmarck, “A tutorial on Stalmarck’s proof procedure for

propositional logic”, Prover Technology AB and Chalmers University of Technol-
ogy, 1998, Sweden.

Per Bjesse and Koen Claessen, “SAT-based Verification without State Space
Traversal”, Formal Methods in Computer-Aided Design, 2000.

S. Dajani-Brown, D. Cofer, G. Hartmann, and S. Pratt, “Formal Modeling and
Analysis of an Avionics Triplex Sensor Voter”, Model Checking Software, 10th
International SPIN Workshop, , Springer-Verlag, May 2003.

G. Berry, A. Bouali, X. Fornari, E. Ledinot, E. Nassor, R. de Simone, “ESTEREL:
a formal method applied to avionic software development”, Science of Computer
Programming V 36 No 1, January 2000.

S. Osder, “Practical View of Redundancy Management Application and Theory”,
Journal of Guidance and Control, Vol. 22 No. 1 | Jan-Feb 1999.

R.P.G. Collinson, Introduction to Avionics, Chapman & Hall, London, 1998.

. K. McMillan, Symbolic Model Checking , Kluwer Academic Publishers, Boston,

Dordrecht, London, 1993.

Micheal R A Huth and Mark D Ryan, Logic in Computer Science Modelling and
reasoning about systems, University Press, Cambridge, United Kingdom, 2000.
SMV web page: http://www-2.cs.cmu.edu/ modelcheck

Simulink weg page: http://wuw.mathworks.com/products/simulink

SCADE 4.1.1, Training Manual, Esterel Technologies, Montreal, Canada.
SCADE 4.2, Design Verifier User Manual, Esterel Technologies, Montreal, Canada.
Gerard Berry, “The effectiveness of Synchronous Languages for the Development
of Safety-Critical Systems”, white paper, Esterel Technologies 2003

T. Ball, V. Levin, and F. Xei, “Automatic Creation of Environment Models via
Training”, TACAS 2004, Barcelona, Spain

